Minerals of the Southern Grenville Province

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Geochemistry and Geochronology".

Deadline for manuscript submissions: closed (24 January 2020) | Viewed by 42020

Special Issue Editors


E-Mail Website
Guest Editor
Department of Geology, St. Lawrence University, Canton, NY 13617, USA
Interests: precambrian geology; geology of the adirondack mountains

E-Mail Website
Guest Editor
New York State Museum, Cultural Education Center, 222 Madison Avenue, Albany, NY 12230, USA
Interests: systematic mineralogy; hard rock petrology; geochemistry, and mineral deposits of New York State

Special Issue Information

Dear Colleagues,

The southern Grenville Province is widely recognized for its mineral specimens, diversity, and associated deposits. Many samples grace private collections and museums worldwide and serve as a source of garnet, wollastonite, talc, titanium, and other commodities derived from world-class mineral deposits. Occurrences known for more than a century continue to yield exceptional specimens and new mineral species, while others have been lost to time. Grenville minerals are known for their size, variety, unique geologic settings, and abundance, providing insight into the unique geological processes that formed them. Environments range from the deep orogenic crust, to alkaline intrusions and carbonatite, massif anorthosite and related rocks, iron deposits, vein-dykes, skarns, shear zones, and vast areas underlain by thick metamorphosed calc-silicate, carbonate rocks, and evaporitic rocks, among others. This Special Issue invites papers that explore the paragenesis of minerals and mineral deposits from the southern Grenville Province of Quebec, Ontario, and New York.

Dr. Jeffrey R. Chiarenzelli
Dr. Marian V. Lupulescu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Grenville Province
  • Minerals
  • Mineral Deposits
  • Paragenesis
  • Anorthosite
  • Marble/Calc-Silicate
  • Vein-Dykes
  • Alkaline Intrusions
  • Adirondacks

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

5 pages, 191 KiB  
Editorial
Editorial for Special Issue “Minerals of the Southern Grenville Province”
by George W. Robinson, Jeffrey R. Chiarenzelli and Marian V. Lupulescu
Minerals 2020, 10(3), 252; https://doi.org/10.3390/min10030252 - 9 Mar 2020
Viewed by 1819
Abstract
The southern Grenville Province is famous for both the large number of mineral localities and the diversity of the mineral species found [...] Full article
(This article belongs to the Special Issue Minerals of the Southern Grenville Province)

Research

Jump to: Editorial, Review

18 pages, 5509 KiB  
Article
The Crystallinity of Apatite in Contact with Metamict Pyrochlore from the Silver Crater Mine, ON, Canada
by Christopher Emproto, Austin Alvarez, Christian Anderkin and John Rakovan
Minerals 2020, 10(3), 244; https://doi.org/10.3390/min10030244 - 7 Mar 2020
Cited by 4 | Viewed by 4194
Abstract
The purpose of this work is to evaluate the long-term effects of radiation on the structure of naturally occurring apatite in the hope of assessing its potential for use as a solid nuclear waste form for actinide sequestration over geologically relevant timescales. When [...] Read more.
The purpose of this work is to evaluate the long-term effects of radiation on the structure of naturally occurring apatite in the hope of assessing its potential for use as a solid nuclear waste form for actinide sequestration over geologically relevant timescales. When a crystal is exposed to radioactivity from unstable constituent atoms undergoing decay, the crystal’s structure may become damaged. Crystalline materials rendered partially or wholly amorphous in this way are deemed “partially metamict” or “metamict” respectively. Intimate proximity of a non-radioactive mineral to a radioactive one may also cause damage in the former, evident, for example, in pleochroic haloes surrounding zircon inclusions in micas. Radiation damage may be repaired through the process of annealing. Experimental evidence suggests that apatite may anneal during alpha particle bombardment (termed “self-annealing”), which, combined with a low solubility in aqueous fluids and propensity to incorporate actinide elements, makes this mineral a promising phase for nuclear waste storage. Apatite evaluated in this study occurs in a Grenville-aged crustal carbonatite at the Silver Crater Mine in direct contact with U-bearing pyrochlore (var. betafite)—a highly radioactive mineral. Stable isotope analyses of calcite from the carbonatite yield δ18O and δ13C consistent with other similar deposits in the Grenville Province. Although apatite and betafite imaged using cathodoluminescence (CL) show textures indicative of fracture-controlled alteration, Pb isotope analyses of betafite from the Silver Crater Mine reported in previous work are consistent with a model of long term Pb loss from diffusion, suggesting the alteration was not recent. Thus, it is interpreted that these minerals remained juxtaposed with no further metamorphic overprint for ≈1.0 Ga, and therefore provide an ideal opportunity to study the effects of natural, actinide-sourced radiation on the apatite structure over long timescales. Through broad and focused X-ray beam analyses and electron backscatter diffraction (EBSD) mapping, the pyrochlore is shown to be completely metamict—exhibiting no discernible diffraction associated with crystallinity. Meanwhile, apatite evaluated with these methods is confirmed to be highly crystalline with no detectable radiation damage. However, the depth of α-decay damage is not well-understood, with reported depths ranging from tens of microns to just a few nanometers. EBSD, a surface sensitive technique, was therefore used to evaluate the crystallinity of apatite surfaces which had been in direct contact with radioactive pyrochlore, and the entire volume of small apatite crystals whose cores may have received significant radiation doses. The EBSD results demonstrate that apatite remains crystalline, as derived from sharp and correctly-indexed Kikuchi patterns, even on surfaces in direct contact with a highly radioactive source for prolonged periods in natural systems. Full article
(This article belongs to the Special Issue Minerals of the Southern Grenville Province)
Show Figures

Figure 1

13 pages, 3021 KiB  
Article
Microscopic Blue Sapphire in Nelsonite from the Western Adirondack Mountains of New York State, USA
by Robert S. Darling, Jessica L. Gordon and Ellis R. Loew
Minerals 2019, 9(10), 633; https://doi.org/10.3390/min9100633 - 16 Oct 2019
Cited by 2 | Viewed by 3245
Abstract
Microscopic, non-gem quality, grains of blue sapphire (corundum) have been identified in a small (1–2 cm wide), discontinuous, dike of nelsonite hosted by aluminous feldspathic gneiss. The gneiss was excavated during the construction of a hydroelectric plant on the Black River at Port [...] Read more.
Microscopic, non-gem quality, grains of blue sapphire (corundum) have been identified in a small (1–2 cm wide), discontinuous, dike of nelsonite hosted by aluminous feldspathic gneiss. The gneiss was excavated during the construction of a hydroelectric plant on the Black River at Port Leyden, NY (western Adirondack Highlands). The sapphire location is 250 m NE of the Port Leyden nelsonite deposit. The small dike may represent a separate intrusion of nelsonite or one sheared from the main nelsonite orebody during Ottawan (circa 1050 Ma) deformation and metamorphism. The sapphires range in size from 0.1 to 2.0 mm, and commonly show parting, pleochroism, and hexagonal oscillatory zoning (from deep blue to clear). Electron microprobe analysis shows comparable levels of Fe in both clear (0.71–0.75 wt. %) and blue (0.38–0.77 wt. %) portions of grains, but clear sections have significantly lower TiO2 levels (0.002–0.011 wt.%) compared to blue sections (0.219–0.470 wt. %). Cr2O3 abundances range from 0.006 to 0.079 wt. % whereas V2O3 abundances range from 0.010 to 0.077 wt. % in blue sapphires. Small amounts of MgO were detected in one of the clear corundum grains (0.013 wt. %) and two of the six blue grains (0.001–0.015 wt. %), but the remaining five grains were below the limit of detection. Ga2O3, however, was detected in five out of six blue-colored grains (0.026–0.097 wt. %) but was below the limits of detection for clear grains. Optical spectroscopic data collected on the blue sapphire grains show broad absorbance in the yellow, orange, and red part of the spectrum (~565–740 nm) consistent with intervalence charge transfer between the next nearest neighbor Fe2+ and Ti4+. A magmatic origin of the sapphire grains is supported by petrologic and trace element data from the blue sapphires, but Cr abundances are inconsistent with this interpretation. Sapphire in a nelsonite host rock represents a new type of occurrence. Full article
(This article belongs to the Special Issue Minerals of the Southern Grenville Province)
Show Figures

Figure 1

21 pages, 24404 KiB  
Article
A Silicocarbonatitic Melt and Spinel-Bearing Dunite of Crustal Origin at the Parker Phlogopite Mine, Notre-Dame-du-Laus, Quebec, Canada
by Robert F. Martin and Dirk Schumann
Minerals 2019, 9(10), 613; https://doi.org/10.3390/min9100613 - 6 Oct 2019
Cited by 4 | Viewed by 2996
Abstract
The Parker phlogopite mine, located near Notre-Dame-du-Laus, Quebec, 74 km north of Ottawa, is well known among mineral collectors for its centimetric euhedral crystals of black spinel. Among the dozens of phlogopite mines active in the early 1900s in the Mont-Laurier–Bancroft corridor in [...] Read more.
The Parker phlogopite mine, located near Notre-Dame-du-Laus, Quebec, 74 km north of Ottawa, is well known among mineral collectors for its centimetric euhedral crystals of black spinel. Among the dozens of phlogopite mines active in the early 1900s in the Mont-Laurier–Bancroft corridor in the Central Metasedimentary Belt of the Grenville Province, the Parker mine is exceptional because of the association of forsterite + spinel with phlogopite. Euhedral crystals of these minerals are found “frozen” in a carbonate matrix. The carbonate dike and segregations are associated with spinel-rich dunite that contains accessory diopside, phlogopite, and pargasite, as well as ilmenite and apatite. The interstitial melt crystallized to calcite + dolomite. Hematite appeared as flakes in the melt owing to net loss of hydrogen, and the spinel underwent oxidation-induced exsolution. Our spinel crystal entrapped a domain of carbonate during growth. It also entrapped globules of boundary-layer melt that crystallized to a carbonate + sulfate + phosphate + silicate + oxide assemblage. Such globules, where present in the cumulate, are more pristine than in the coarse crystal of spinel, i.e., less affected by a hydrothermal overprint. We contend that the carbonate melt ultimately formed by the hydrous melting of marble, as supported by oxygen-isotope data on all major minerals. Melting occurred 1140 million years ago, at a time of tectonic relaxation following the Shawinigan compressive stresses. Full article
(This article belongs to the Special Issue Minerals of the Southern Grenville Province)
Show Figures

Figure 1

22 pages, 11094 KiB  
Article
Mineralogy of Chub Lake-Type Hematite Deposits in St. Lawrence County, NY
by Steven C. Chamberlain, Marian V. Lupulescu and David G. Bailey
Minerals 2019, 9(9), 567; https://doi.org/10.3390/min9090567 - 19 Sep 2019
Cited by 2 | Viewed by 4885
Abstract
Numerous localities of specular hematite have been found in the Grenville Province in St. Lawrence County, New York. Here, we focus on six of them: the Dodge mine, the Chub Lake prospect, the Toothaker Creek prospect, the Bowman prospect, the Whitton prospect, and [...] Read more.
Numerous localities of specular hematite have been found in the Grenville Province in St. Lawrence County, New York. Here, we focus on six of them: the Dodge mine, the Chub Lake prospect, the Toothaker Creek prospect, the Bowman prospect, the Whitton prospect, and the Toothaker Pond prospect. We used literature research, interviews, and personal observations to establish the history of each site as a source of mineral specimens. We examined extensive holdings of specimens from each site in the New York State Museum. We used sight identification, chemical tests, x-ray diffraction, and scanning electron microscopy with energy dispersive spectroscopy as necessary to identify all the mineral species present. We had determinations made of the stable oxygen isotope content of quartz, hematite, and calcite from the Chub Lake prospect, reported as 18O relative to Vienna Standard Mean Ocean Water (VSMOW). We conclude that these occurrences formed from groundwaters at a temperature of about 170 °C in areas of low topography on the surface of the Precambrian basement rocks. Two hypotheses for this process are presented and evaluated. Well-crystallized specimens of bladed specular hematite and Cumberland-habit quartz are the most common minerals found. Noteworthy accessory crystallized minerals include barite, calcite, and goethite. All six deposits are relatively free of sulfides, so that secondary goethite formed from weathering of iron-rich carbonates at some sites. It is likely that more such deposits will be discovered in this region in the future. Full article
(This article belongs to the Special Issue Minerals of the Southern Grenville Province)
Show Figures

Figure 1

14 pages, 12393 KiB  
Article
The Kilmar Magnesite Deposits: Evaporitic Metasediments in the Grenville Supergroup, Morin Terrane, Quebec
by William H. Peck and Gary R. Eppich
Minerals 2019, 9(9), 554; https://doi.org/10.3390/min9090554 - 14 Sep 2019
Cited by 5 | Viewed by 4000
Abstract
Mesoproterozoic magnesite deposits are found associated with dolomitic marble and intercalated with metasedimentary rocks of the Grenville Supergroup in the granulite facies Morin terrane (Grenville Province, Quebec). This study examines one of the remaining ore deposits exposed on the surface (at the Dobbie [...] Read more.
Mesoproterozoic magnesite deposits are found associated with dolomitic marble and intercalated with metasedimentary rocks of the Grenville Supergroup in the granulite facies Morin terrane (Grenville Province, Quebec). This study examines one of the remaining ore deposits exposed on the surface (at the Dobbie mine), and presents stable isotope and mineralogical data for a marine evaporitic origin. The magnesite ore zone has δ18O(Mag) = 25.5 ± 0.4‰ (VSMOW) and δ13C(Mag) = 1.7 ± 0.2‰ (VPDB; n = 7), while surrounding dolomitic marble has δ18O(Dol) = 24.2 ± 0.6‰ and δ13C(Dol) = −0.2 ± 0.7‰ (n = 11). These values are at the high end of the range for other Morin terrane marbles, and this and sharp transitions in stable isotope ratios between lithologies argue for preservation of evaporitic enrichment in δ18O and δ13C. Boron isotope ratios (δ11B = 15.5‰ to 22.7‰) are also consistent with a marine evaporite origin. Identifying evaporitic protoliths in metasedimentary rocks is important for determining pre-metamorphic depositional environments, and in this case links the sedimentary setting of the Morin terrane to the Adirondack Lowlands (New York, NY, USA). The identification of the Kilmar magnesite deposits as evaporitic also has implications for the formation of sedimentary exhalative base metal deposits in the Grenville Supergroup. Full article
(This article belongs to the Special Issue Minerals of the Southern Grenville Province)
Show Figures

Figure 1

26 pages, 7386 KiB  
Article
Age and Origin of Silicocarbonate Pegmatites of the Adirondack Region
by Jeffrey Chiarenzelli, Marian Lupulescu, George Robinson, David Bailey and Jared Singer
Minerals 2019, 9(9), 508; https://doi.org/10.3390/min9090508 - 23 Aug 2019
Cited by 6 | Viewed by 5328
Abstract
Silicocarbonate pegmatites from the southern Grenville Province have provided exceptionally large crystal specimens for more than a century. Their mineral parageneses include euhedral calc–silicate minerals such as amphibole, clinopyroxene, and scapolite within a calcite matrix. Crystals can reach a meter or more in [...] Read more.
Silicocarbonate pegmatites from the southern Grenville Province have provided exceptionally large crystal specimens for more than a century. Their mineral parageneses include euhedral calc–silicate minerals such as amphibole, clinopyroxene, and scapolite within a calcite matrix. Crystals can reach a meter or more in long dimension. Minor and locally abundant phases reflect local bedrock compositions and include albite, apatite, perthitic microcline, phlogopite, zircon, tourmaline, titanite, danburite, uraninite, sulfides, and many other minerals. Across the Adirondack Region, individual exposures are of limited aerial extent (<10,000 m2), crosscut metasedimentary rocks, especially calc–silicate gneisses and marbles, are undeformed and are spatially and temporally associated with granitic pegmatites. Zircon U–Pb results include both Shawinigan (circa 1165 Ma) and Ottawan (circa 1050 Ma) intrusion ages, separated by the Carthage-Colton shear zone. Those of Shawinigan age (Lowlands) correspond with the timing of voluminous A-type granitic magmatism, whereas Ottawan ages (Highlands) are temporally related to orogenic collapse, voluminous leucogranite and granitic pegmatite intrusion, iron and garnet ore development, and pervasive localized hydrothermal alteration. Inherited zircon, where present, reflects the broad range of igneous and detrital ages of surrounding rocks. Carbon and oxygen isotopic ratios from calcite plot within a restricted field away from igneous carbonatite values to those of typical sedimentary carbonates and local marbles. Collectively, these exposures represent a continuum between vein-dyke and skarn occurrences involving the anatexis of metasedimentary country rocks. Those of Ottawan age can be tied to movement and fluid flow along structures accommodating orogenic collapse, particularly the Carthage-Colton shear zone. Full article
(This article belongs to the Special Issue Minerals of the Southern Grenville Province)
Show Figures

Figure 1

20 pages, 3233 KiB  
Article
Constraints from Geochemistry and Field Relationships for the Origin of Kornerupine-Bearing Gneiss from the Grenvillian New Jersey Highlands and Implications for the Source of Boron
by Richard A. Volkert
Minerals 2019, 9(7), 431; https://doi.org/10.3390/min9070431 - 14 Jul 2019
Cited by 4 | Viewed by 4085
Abstract
Kornerupine ± prismatine is present in granulite-facies paragneiss at two locations in the Grenvillian New Jersey Highlands, occurring in an assemblage composed of quartz + biotite + K-feldspar + plagioclase + garnet + Fe-Ti oxides ± sillimanite ± rutile ± graphite. Estimates of [...] Read more.
Kornerupine ± prismatine is present in granulite-facies paragneiss at two locations in the Grenvillian New Jersey Highlands, occurring in an assemblage composed of quartz + biotite + K-feldspar + plagioclase + garnet + Fe-Ti oxides ± sillimanite ± rutile ± graphite. Estimates of the metamorphic conditions of the host gneiss are ≥600 MPa and ~740 °C during the Ottawan phase of the Grenvillian Orogeny. Geochemical compositions of kornerupine-bearing gneiss are consistent with protoliths that were graywacke sandstone and pelite. Metagraywacke is characterized by (in wt. %) 62–76% SiO2, 0.3–0.8% TiO2, 13–16% Al2O3, 0.6–4.3% CaO, 2.2–6.4% Na2O, 1.7–7.4% K2O, and 90–260 ppm Zr; metapelite has lower SiO2 (53–66%) and CaO (0.5–2.0%), higher TiO2 (0.9–1.8%), Al2O3, (15–26%), and Zr (210–490 ppm), and comparable Na2O (2.5–4.9%) and K2O (2.5–7.4%). Indices of weathering and alteration yield low to intermediate values implying a relatively unweathered sediment source. Provenance discriminants suggest the protoliths formed from immature, first-cycle sediments derived mainly from a felsic arc-related source. The geological relationships of kornerupine-bearing gneiss are most compatible with boron sourced from B-rich sediments deposited in the protoliths between ca. 1299 and 1238 Ma. The breakdown of these sediments due to dehydration reactions during Ottawan prograde metamorphism led to mobilization of a B-rich fluid that migrated short distances to favorable structural sites in the host gneiss, resulting in precipitation of the borosilicates. Full article
(This article belongs to the Special Issue Minerals of the Southern Grenville Province)
Show Figures

Figure 1

7 pages, 585 KiB  
Communication
The Atomic Arrangement of Cr-rich Tourmaline from the #1 Mine, Balmat, St. Lawrence County, New York, USA
by Steven G. Dannenberg, Devany Di Paolo, Alix M. Ehlers, Kyle P. McCarthy, Mark T. Mancini, Matthew B. Reuter, Dennis M. Seth, Zihui Song, Maria I. Valladares, Xuanfu Zhu, John M. Hughes and Marian V. Lupulescu
Minerals 2019, 9(7), 398; https://doi.org/10.3390/min9070398 - 28 Jun 2019
Cited by 4 | Viewed by 3607
Abstract
Chromium-bearing tourmalines are rare. Chromium-rich tourmaline from the northwestern part of the Adirondack Mountains in the Adirondack Lowlands is among the most chromium-rich tourmalines found to date. The mineral, with >21.0 wt. % Cr2O3, is from the marble-hosted talc–tremolite–cummingtonite [...] Read more.
Chromium-bearing tourmalines are rare. Chromium-rich tourmaline from the northwestern part of the Adirondack Mountains in the Adirondack Lowlands is among the most chromium-rich tourmalines found to date. The mineral, with >21.0 wt. % Cr2O3, is from the marble-hosted talc–tremolite–cummingtonite schist in the #1 mine in Balmat, St. Lawrence County, New York. The atomic arrangement of the sample (a = 16.0242(3) Å, c = 7.3002(2) Å) was refined to R1 = 0.0139. The composition, from chemical analyses and optimization of the formula, is X(Ca0.22Na0.69K0.01) Y(Cr3+1.68Mg0.80Ti0.13V0.06Mn0.02Fe0.02Li0.29) Z(Al3.11Cr3+1.18Mg1.70Fe0.01) T(Si5.93Al0.07) B3O27 OH3.99 F0.01. There has been extensive debate over the ordering of Cr3+ between the tourmaline Y and Z octahedral sites. Recent work has suggested that, at low concentrations (<~1.03 apfu), the substituent Cr3+ is ordered into the Y-site, whereas, at greater concentrations, the substituent is disordered over both octahedral sites. An analysis of nine recently published, high-precision structures of chromium-bearing tourmaline, in combination with the Adirondack tourmaline, suggests that structural changes to the Y-site at low concentrations of Cr3+ induce changes in the Z-site that make it more amenable to incorporation of the Cr3+ substituents by increasing <Z–O>. The bond lengths change to lower the bond-valence sum of Cr3+ in the Z-site of the chromium-dravite, making that site more amenable to the substituent. Calculations suggest that the Z-site begins to accept substituent Cr3+ when the bond valence sum of that ion in Z reduces to a value of ~3.36 valence units. Full article
(This article belongs to the Special Issue Minerals of the Southern Grenville Province)
Show Figures

Figure 1

Review

Jump to: Editorial, Research

34 pages, 8594 KiB  
Review
A Review of Boron-Bearing Minerals (Excluding Tourmaline) in the Adirondack Region of New York State
by David G. Bailey, Marian V. Lupulescu, Robert S. Darling, Jared W. Singer and Steven C. Chamberlain
Minerals 2019, 9(10), 644; https://doi.org/10.3390/min9100644 - 22 Oct 2019
Cited by 6 | Viewed by 6798
Abstract
Boron is a biologically important element, but its distribution in the natural environment and its behavior during many geological processes is not fully understood. In most metamorphic and igneous environments, boron is incorporated into minerals of the tourmaline supergroup. In high-grade metamorphic terranes [...] Read more.
Boron is a biologically important element, but its distribution in the natural environment and its behavior during many geological processes is not fully understood. In most metamorphic and igneous environments, boron is incorporated into minerals of the tourmaline supergroup. In high-grade metamorphic terranes like that of the Adirondack region of northern New York State, uncommon rock compositions combined with unusual and variable geologic conditions resulted in the formation of many additional boron-bearing minerals. This paper reviews the occurrences and geological settings of twelve relatively uncommon boron-bearing minerals in the southern Grenville Province of upstate New York and provides new chemical and Raman spectral data for seven of these minerals. The boron minerals range from relatively simple metal borates (e.g., vonsenite), to chemically complex borosilicates (e.g., prismatine), to a relatively rare borosilicate-carbonate (e.g., harkerite). Some are of primary igneous origin, while others are formed by a variety of prograde and retrograde metamorphic processes or by metasomatic/hydrothermal processes. Most of the boron minerals are formed within, or adjacent to, metasedimentary lithologies that surround the anorthositic massifs of the central Adirondacks. The metasedimentary rocks are thought to be the source of most of the boron, although additional boron isotope studies are needed to confirm this and to constrain the mechanisms of the formation of these unusual minerals. Full article
(This article belongs to the Special Issue Minerals of the Southern Grenville Province)
Show Figures

Figure 1

Back to TopTop