Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8163 KiB  
Perspective
Use of Water-In-Salt Concentrated Liquid Electrolytes in Electrochemical Energy Storage: State of the Art and Perspectives
by Shahid Khalid, Nicolò Pianta, Piercarlo Mustarelli and Riccardo Ruffo
Batteries 2023, 9(1), 47; https://doi.org/10.3390/batteries9010047 - 7 Jan 2023
Cited by 8 | Viewed by 4541
Abstract
Batteries based on organic electrolytes have been raising safety concerns due to some associated fire/explosion accidents caused by the unusual combination of highly flammable organic electrolytes and high energy electrodes. Nonflammable aqueous batteries are a good alternative to the current energy storage systems. [...] Read more.
Batteries based on organic electrolytes have been raising safety concerns due to some associated fire/explosion accidents caused by the unusual combination of highly flammable organic electrolytes and high energy electrodes. Nonflammable aqueous batteries are a good alternative to the current energy storage systems. However, what makes aqueous batteries safe and viable turns out to be their main weakness, since water molecules are prone to decomposition because of a narrow electrochemical stability window (ESW). In this perspective we introduce aqueous batteries and then discuss the state-of-the-art of water-in-salt (WIS) electrolytes for aqueous energy storage systems. The main strategies to improve ESW are reviewed, including: (i) the use of fluorinated salts to make a solid electrolyte interphase (SEI); (ii) the use of cost-effective and highly soluble salts to reduce water activity through super concentration; and (iii) the use of hybrid electrolytes combining the advantages of both aqueous and non-aqueous phases. Then, we discuss different battery chemistries operated with different WIS electrolytes. Finally, we highlight the challenges and future technological perspectives for practical aqueous energy storage systems, including applications in stationary storage/grid, power backup, portable electronics, and automotive sectors. Full article
(This article belongs to the Topic Energy Storage Materials and Devices)
Show Figures

Figure 1

14 pages, 2206 KiB  
Article
Strain Compensation Methods for Fiber Bragg Grating Temperature Sensors Suitable for Integration into Lithium-Ion Battery Electrolyte
by Johanna Unterkofler, Gregor Glanz, Markus Koller, Reinhard Klambauer and Alexander Bergmann
Batteries 2023, 9(1), 34; https://doi.org/10.3390/batteries9010034 - 3 Jan 2023
Cited by 6 | Viewed by 2275
Abstract
Temperature is a crucial factor for the safe operation of lithium-ion batteries. During operation, the internal temperature rises above the external temperature due to poor inner thermal conductivity. Various sensors have been proposed to detect the internal temperature, including fiber Bragg grating sensors. [...] Read more.
Temperature is a crucial factor for the safe operation of lithium-ion batteries. During operation, the internal temperature rises above the external temperature due to poor inner thermal conductivity. Various sensors have been proposed to detect the internal temperature, including fiber Bragg grating sensors. However, to the authors’ knowledge, there is no detailed description of the encapsulation of the fiber Bragg grating sensor in the literature to shield it from strain. In this study, different encapsulation methods for strain compensation were compared to find the encapsulation material most compatible with the electrolyte. For this, we stored the proposed sensors with different encapsulation methods in ethylene carbonate:ethyl methyl carbonate (EC:EMC) 3:7 with LiPF6 (lithium hexafluorophosphate) electrolyte and applied temperature changes. After evaluating the sensor encapsulation methods in terms of handling, diameter, uncertainty, usability, and hysteresis behavior, the most suitable sensor encapsulation was found to be a fused silica capillary with polyimide coating. Full article
Show Figures

Figure 1

11 pages, 2877 KiB  
Article
In Situ Solidified Gel Polymer Electrolytes for Stable Solid−State Lithium Batteries at High Temperatures
by Junfeng Ma, Zhiyan Wang, Jinghua Wu, Zhi Gu, Xing Xin and Xiayin Yao
Batteries 2023, 9(1), 28; https://doi.org/10.3390/batteries9010028 - 30 Dec 2022
Cited by 8 | Viewed by 3757
Abstract
Lithium metal batteries have attracted much attention due to their high energy density. However, the critical safety issues and chemical instability of conventional liquid electrolytes in lithium metal batteries significantly limit their practical application. Herein, we propose polyethylene (PE)−based gel polymer electrolytes by [...] Read more.
Lithium metal batteries have attracted much attention due to their high energy density. However, the critical safety issues and chemical instability of conventional liquid electrolytes in lithium metal batteries significantly limit their practical application. Herein, we propose polyethylene (PE)−based gel polymer electrolytes by in situ polymerization, which comprise a PE skeleton, polyethylene glycol and lithium bis(trifluoromethylsulfonyl)imide as well as liquid carbonate electrolytes. The obtained PE−based gel polymer electrolyte exhibits good interfacial compatibility with electrodes, high ion conductivity, and wide electrochemical window at high temperatures. Moreover, the assembled LiFePO4//Li solid−state batteries employing PE−based gel polymer electrolyte with 50% liquid carbonate electrolytes deliver good rate performance and excellent cyclic life at both 60 °C and 80 °C. In particular, they achieve high specific capacities of 158.5 mA h g−1 with a retention of 98.87% after 100 cycles under 80 °C at 0.5 C. The in situ solidified method for preparing PE−based gel polymer electrolytes proposes a feasible approach for the practical application of lithium metal batteries. Full article
Show Figures

Figure 1

57 pages, 19335 KiB  
Review
Progress and Prospect of Practical Lithium-Sulfur Batteries Based on Solid-Phase Conversion
by Yikun Yi, Feng Hai, Jingyu Guo, Xiaolu Tian, Shentuo Zheng, Zhendi Wu, Tao Wang and Mingtao Li
Batteries 2023, 9(1), 27; https://doi.org/10.3390/batteries9010027 - 29 Dec 2022
Cited by 5 | Viewed by 3331
Abstract
Lithium–sulfur (Li–S) batteries hold great promise in the field of power and energy storage due to their high theoretical capacity and energy density. However, the “shuttle effect” that originates from the dissolution of intermediate lithium polysulfides (LiPSs) during the charging and discharging process [...] Read more.
Lithium–sulfur (Li–S) batteries hold great promise in the field of power and energy storage due to their high theoretical capacity and energy density. However, the “shuttle effect” that originates from the dissolution of intermediate lithium polysulfides (LiPSs) during the charging and discharging process is prone to causing continuous irreversible capacity loss, which restricts the practical development. Beyond the traditional Li–S batteries based on the dissolution-diffusion mechanism, novel Li–S batteries based on solid-phase conversion exhibit superior cycling stability owing to the absolute prevention of polysulfides shuttling. Radically eliminating the formation of polysulfides in cathodes or cutting off their diffusion in electrolytes are the two main ways to achieve solid-phase conversion. Generally, direct transformation of sulfur to final Li2S without polysulfides participation tends to occur in short-chain sulfur polymers or special molecular forms of sulfur substances, while specific regulations of liquid electrolytes with solvating structure or solid-state electrolytes can effectively suppressing the polysulfides dissolution. In this review, we systematically organized and summarized the structures and approaches to achieve solid-phase conversion, introduce their preparation methods, discuss their advantages and disadvantages, and analyze the factors and effects of different structures on battery performances. Finally, the problems demanding a prompt solution for the practical development of solid-phase conversion-based Li–S batteries, as well as their future development direction, are suggested. Full article
(This article belongs to the Special Issue Lithium-Sulfur Batteries: Research Progress of Key Materials)
Show Figures

Figure 1

13 pages, 5677 KiB  
Article
The Stabilizing of 1T-MoS2 for All-Solid-State Lithium-Ion Batteries
by Peidian Chong, Ziwang Zhou, Kaihong Wang, Wenhao Zhai, Yafeng Li, Jianbiao Wang and Mingdeng Wei
Batteries 2023, 9(1), 26; https://doi.org/10.3390/batteries9010026 - 29 Dec 2022
Cited by 9 | Viewed by 2859
Abstract
All-solid-state batteries (SSBs) are prospective candidates for a range of energy accumulation systems, delivering higher energy densities compared to batteries which use liquid electrolytes. Amongst the numerous solid-state electrolytes (SEs), sulfide-based electrolytes in particular have received more attention given that they have a [...] Read more.
All-solid-state batteries (SSBs) are prospective candidates for a range of energy accumulation systems, delivering higher energy densities compared to batteries which use liquid electrolytes. Amongst the numerous solid-state electrolytes (SEs), sulfide-based electrolytes in particular have received more attention given that they have a high ionic conductivity. However, the incompatibility between the electrode and SEs is still an ongoing challenge that leads to poor electrochemical performance. In this work, we focus on 1T-MoS2. It is well known that 1T metallic MoS2 is unstable even at room temperature. However, we showed that 1T-MoS2 can be stabilized at 600 °C for at least 2 h, and the 1T-MoS2-600 interlayer spacing expanded to 0.95 nm. The high crystallinity of the 1T phase is highly compatible with solid electrolytes and coupled with the increased interlayer spacing, so in the all-solid-state lithium-ion battery (ALLLIB), we achieved outstanding cycling performance. At the current density of 0.2 C (1 C = 670 mA g−1), this material delivered a capacity of 406 mA h g−1 after 50 cycles. Full article
Show Figures

Figure 1

13 pages, 2812 KiB  
Article
Electrocatalytic and Conductive Vanadium Oxide on Carbonized Bacterial Cellulose Aerogel for the Sulfur Cathode in Li-S Batteries
by Xueyan Lin, Wenyue Li, Xuan Pan, Shu Wang and Zhaoyang Fan
Batteries 2023, 9(1), 14; https://doi.org/10.3390/batteries9010014 - 26 Dec 2022
Cited by 2 | Viewed by 2288
Abstract
Many transition-metal-oxide-based catalysts have been investigated to chemically bind soluble lithium polysulfides and accelerate their redox kinetics in lithium-sulfur (Li-S) battery chemistry. However, the intrinsic poor electrical conductivities of these oxides restrict their catalytic performance, consequently limiting the sulfur utilization and the rate [...] Read more.
Many transition-metal-oxide-based catalysts have been investigated to chemically bind soluble lithium polysulfides and accelerate their redox kinetics in lithium-sulfur (Li-S) battery chemistry. However, the intrinsic poor electrical conductivities of these oxides restrict their catalytic performance, consequently limiting the sulfur utilization and the rate performance of Li-S batteries. Herein, we report a freestanding electrocatalytic sulfur host consisting of hydrogen-treated VO2 nanoparticles (H-VO2) anchored on nitrogen-doped carbonized bacterial cellulose aerogels (N-CBC). The hydrogen treatment enables the formation and stabilization of the rutile VO2(R) phase with metallic conductivity at room temperature, significantly enhancing its catalytic capability compared to the as-synthesized insulative VO2(M) phase. Several measurements characterize the electrocatalytic performance of this unique H-VO2@N-CBC structure. In particular, the two kinetic barriers between S8, polysulfides, and Li2S are largely reduced by 28.2 and 43.3 kJ/mol, respectively. Accordingly, the Li-S battery performance, in terms of sulfur utilization and charge/discharge rate, is greatly improved. This work suggests an effective strategy to develop conductive catalysts based on a typical transition metal oxide (VO2) for Li-S batteries. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Batteries)
Show Figures

Figure 1

22 pages, 16816 KiB  
Article
Particle Contamination in Commercial Lithium-Ion Cells—Risk Assessment with Focus on Internal Short Circuits and Replication by Currently Discussed Trigger Methods
by Jens Grabow, Jacob Klink, Ralf Benger, Ines Hauer and Hans-Peter Beck
Batteries 2023, 9(1), 9; https://doi.org/10.3390/batteries9010009 - 23 Dec 2022
Cited by 9 | Viewed by 3463
Abstract
A possible contamination with impurities or material weak points generated in cell production of lithium-ion batteries increases the risk of spontaneous internal short circuits (ISC). An ISC can lead to a sudden thermal runaway (TR) of the cell, thereby making these faults especially [...] Read more.
A possible contamination with impurities or material weak points generated in cell production of lithium-ion batteries increases the risk of spontaneous internal short circuits (ISC). An ISC can lead to a sudden thermal runaway (TR) of the cell, thereby making these faults especially dangerous. Evaluation regarding the criticality of an ISC, the development of detection methods for timely fault warning and possible protection concepts require a realistic failure replication for general validation. Various trigger methods are currently discussed to reproduce these ISC failure cases, but without considering a valid basis for the practice-relevant particle properties. In order to provide such a basis for the evaluation and further development of trigger methods, in this paper, the possibilities of detecting impurity particles in production were reviewed and real particles from pouch cells of an established cell manufacturer were analysed. The results indicate that several metallic particles with a significant size up to 1 mm × 1.7 mm could be found between the cell layers. This evidence shows that contamination with impurity particles cannot be completely prevented in cell production, as a result of which particle-induced ISC must be expected and the need for an application-oriented triggering method currently exists. The cause of TR events in the field often cannot be identified. However, it is noticeable that such faults often occur during the charging process. A new interesting hypothesis for this so-far unexplained phenomenon is presented here. Based on all findings, the current trigger methods for replicating an external particle-induced ISC were evaluated in significant detail and specific improvements are identified. Here, it is shown that all current trigger methods for ISC replication exhibit weaknesses regarding reproducibility, which results mainly from the scattering random ISC contact resistance. Full article
(This article belongs to the Topic Safety of Lithium-Ion Batteries)
Show Figures

Figure 1

12 pages, 3043 KiB  
Article
Defect Chemistry in Zn3V4(PO4)6
by Navaratnarajah Kuganathan
Batteries 2023, 9(1), 5; https://doi.org/10.3390/batteries9010005 - 22 Dec 2022
Viewed by 1549
Abstract
Zinc-ion batteries have attracted great interest for their low cost, safety, and high energy density. Recently, Zn3V4(PO4)6 has been reported to be a promising cathode material for zinc-ion batteries. The defect chemistry, diffusion of Zn-ions, and [...] Read more.
Zinc-ion batteries have attracted great interest for their low cost, safety, and high energy density. Recently, Zn3V4(PO4)6 has been reported to be a promising cathode material for zinc-ion batteries. The defect chemistry, diffusion of Zn-ions, and solution of dopants are examined by advanced simulation techniques. The simulation results show that the most favorable intrinsic defect is the Zn-V anti-site. A zig-zag pattern of long-range Zn2+ diffusion is observed and the activation energy of 1.88 eV indicates that the ionic conductivity of this material is low. The most promising isovalent dopants on the Zn site are Ca2+ and Fe2+. Although the solution of Ga3+, Sc3+, In3+, Y3+, Gd3+, and La3+ on the V site is exoergic, the most promising is In3+. Different reaction routes for the formation of Zn3V4(PO4)6 are considered and the most thermodynamically favorable reaction consists of binary oxides (ZnO, V2O3, and P2O5) as reactants. Full article
(This article belongs to the Special Issue Zinc-Ion Batteries: Issues and Opportunities)
Show Figures

Figure 1

20 pages, 5598 KiB  
Review
Anode-Free Rechargeable Sodium-Metal Batteries
by Qiao Ni, Yuejiao Yang, Haoshen Du, Hao Deng, Jianbo Lin, Liu Lin, Mengwei Yuan, Zemin Sun and Genban Sun
Batteries 2022, 8(12), 272; https://doi.org/10.3390/batteries8120272 - 5 Dec 2022
Cited by 8 | Viewed by 6134
Abstract
Due to the advantages of rich resources, low cost, high energy conversion efficiency, long cycle life, and low maintenance fee, sodium–ion batteries have been regarded as a promising energy storage technology. However, their relatively low energy density compared with the commercialized lithium–ion batteries [...] Read more.
Due to the advantages of rich resources, low cost, high energy conversion efficiency, long cycle life, and low maintenance fee, sodium–ion batteries have been regarded as a promising energy storage technology. However, their relatively low energy density compared with the commercialized lithium–ion batteries still impedes their application for power systems. Anode–free rechargeable sodium–metal batteries (AFSMBs) pose a solution to boost energy density and tackle the safety problems of metal batteries. At present, researchers still lack a comprehensive understanding of the anode-free cells in terms of electrolytes, solid–electrolyte interphase (SEI), and current collectors. This review is devoted to the field of AFSMBs, and outlines the breakthroughs that have been accomplished along with our perspective on the direction of future development for AFSMBs and the areas that warrant further investigation. Full article
(This article belongs to the Special Issue Anode Materials for Sodium-Ion Batteries)
Show Figures

Figure 1

21 pages, 3536 KiB  
Article
Verification of the Modified Degradation Mode Identification Technique by Employing Electrochemical Impedance Spectroscopy and Differential Voltage Analysis
by Sadia Tasnim Mowri, Anup Barai, Aniruddha Gupta and James Marco
Batteries 2022, 8(12), 274; https://doi.org/10.3390/batteries8120274 - 5 Dec 2022
Cited by 2 | Viewed by 2285
Abstract
For retired automotive lithium-ion batteries, state of health (SoH) is currently utilised to grade them for a second-life application. However, researchers previously challenged this and expressed that, in addition to SoH, the actual degradation mechanism, also known as degradation mode (DM), should be [...] Read more.
For retired automotive lithium-ion batteries, state of health (SoH) is currently utilised to grade them for a second-life application. However, researchers previously challenged this and expressed that, in addition to SoH, the actual degradation mechanism, also known as degradation mode (DM), should be considered for grading, for efficient second-life operation. To date, there is little evidence to support this. A validated DM detection technique for cell/module grading does not exist. A modified DM detection technique by tracking and indexing the incremental capacity (IC) curves was previously proposed by the authors; nevertheless, it was difficult to validate. Researchers previously proposed DM identification using Electrochemical Impedance Spectroscopy (EIS) and Differential Voltage (DV) analysis. With a direct comparison of the techniques made exploiting IC, DV, and EIS, a correlation can be made, which is presented in this article. The correlation suggests that cells identified as having the same (or different) DM by the proposed technique also identified as having the same (or different) DM growth by EIS technique proposed by other researchers. Likewise, DV analysis suggests that the DV peak’s standard deviation of similar DM cells is smaller than that of the different DM cells. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Figure 1

16 pages, 9729 KiB  
Article
Nanostructured Manganese Dioxide for Hybrid Supercapacitor Electrodes
by Jon Rodriguez-Romero, Idoia Ruiz de Larramendi and Eider Goikolea
Batteries 2022, 8(12), 263; https://doi.org/10.3390/batteries8120263 - 30 Nov 2022
Cited by 9 | Viewed by 3104
Abstract
Hybrid supercapacitors, as emerging energy storage devices, have gained much attention in recent years due to their high energy density, fast charge/discharge and long cyclabilities. Among the wide range of systems covered by this topic, low cost, environmental friendliness and high power provide [...] Read more.
Hybrid supercapacitors, as emerging energy storage devices, have gained much attention in recent years due to their high energy density, fast charge/discharge and long cyclabilities. Among the wide range of systems covered by this topic, low cost, environmental friendliness and high power provide MnO2 with great characteristics to be a competitive candidate. The present work reports a hybrid aqueous supercapacitor system using a commercial activated carbon as the negative electrode and a synthesized manganese dioxide as the positive electrode. Two manganese dioxide polymorphs (α-MnO2 and δ-MnO2) were tested in different neutral and basic aqueous electrolytes. In this way, full cell systems that reached an energy density of 15.6 Wh kg−1 at a power density of 1 kW kg−1 were achieved. The electrode–electrolyte combination explored in this study exhibits excellent performance without losing capacity after 5000 charge/discharge cycles, leading to a promising approach towards more sustainable, high-performance energy storage systems. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Batteries)
Show Figures

Figure 1

14 pages, 4468 KiB  
Article
Mitigating Polysulfide Shuttles with Upcycled Alkali Metal Terephthalate Decorated Separators
by Daniel A. Gribble, Zih-Yu Lin, Sourav Ghosh, Brett M. Savoie and Vilas G. Pol
Batteries 2022, 8(12), 253; https://doi.org/10.3390/batteries8120253 - 23 Nov 2022
Cited by 1 | Viewed by 2575
Abstract
High energy density lithium–sulfur batteries (LSBs) are a potential replacement for lithium-ion batteries (LIBs). However, practical lifetimes are inhibited by lithium polysulfide (LiPS) shuttling. Concurrently, plastic waste accumulation worldwide threatens our ecosystems. Herein, a fast and facile strategy to upcycle polyethylene terephthalate (PET) [...] Read more.
High energy density lithium–sulfur batteries (LSBs) are a potential replacement for lithium-ion batteries (LIBs). However, practical lifetimes are inhibited by lithium polysulfide (LiPS) shuttling. Concurrently, plastic waste accumulation worldwide threatens our ecosystems. Herein, a fast and facile strategy to upcycle polyethylene terephthalate (PET) waste into useful materials is investigated. Dilithium terephthalate (Li2TP) and dipotassium terephthalate (K2TP) salts were synthesized from waste soda bottles via microwave depolymerization and solution coated onto glass fiber paper (GFP) separators. Salt-functionalized separators with Li2TP@GFP and K2TP@GFP mitigated LiPS shuttling and improved electrochemical performance in cells. Pore analysis and density functional theory (DFT) calculations indicate the action mechanism is synergistic physical blocking of bulky LiPS anions in nanopores and diffusion inhibition via electrostatic interactions with abundant carboxylate groups. LSBs with K2TP@GFP separator showing highest LiPS affinity and smallest pore size demonstrated enhanced initial capacity as compared to non-modified GFP by 5.4% to 648 mAh g−1, and increased cycle 100 capacity by 23% to 551 mAh g−1. Overall, K2TP@GFP retained 85% of initial capacity after 100 cycles with an average capacity fading of 0.15% per cycle. By comparison, GFP retained only 73% of initial capacity after 100 cycles with 0.27% average capacity loss, demonstrating effective LiPS retention. Full article
(This article belongs to the Collection Advances in Battery Materials)
Show Figures

Figure 1

28 pages, 4239 KiB  
Review
A Review of Lithium-Ion Battery Failure Hazards: Test Standards, Accident Analysis, and Safety Suggestions
by Xin Lai, Jian Yao, Changyong Jin, Xuning Feng, Huaibin Wang, Chengshan Xu and Yuejiu Zheng
Batteries 2022, 8(11), 248; https://doi.org/10.3390/batteries8110248 - 20 Nov 2022
Cited by 37 | Viewed by 11458
Abstract
The frequent safety accidents involving lithium-ion batteries (LIBs) have aroused widespread concern around the world. The safety standards of LIBs are of great significance in promoting usage safety, but they need to be constantly upgraded with the advancements in battery technology and the [...] Read more.
The frequent safety accidents involving lithium-ion batteries (LIBs) have aroused widespread concern around the world. The safety standards of LIBs are of great significance in promoting usage safety, but they need to be constantly upgraded with the advancements in battery technology and the extension of the application scenarios. This study comprehensively reviews the global safety standards and regulations of LIBs, including the status, characteristics, and application scope of each standard. A standardized test for thermal runaway triggering is also introduced. The recent fire accidents in electric vehicles and energy storage power stations are discussed in relation to the upgrading of the rational test standards. Finally, the following four suggestions for improving battery safety are proposed to optimize the safety standards: (1) early warning and cloud alarms for the battery’s thermal runaway; (2) an innovative structural design for a no-fire battery pack; (3) the design of a fire water injection interface for the battery pack; (4) the design of an immersive energy storage power station. This study provides insights for promoting the effectiveness of relevant safety standards for LIBs, thereby reducing the failure hazards. Full article
(This article belongs to the Collection Advances in Battery Energy Storage and Applications)
Show Figures

Figure 1

24 pages, 12542 KiB  
Review
A Review of the Application of Carbon Materials for Lithium Metal Batteries
by Zeyu Wu, Kening Sun and Zhenhua Wang
Batteries 2022, 8(11), 246; https://doi.org/10.3390/batteries8110246 - 18 Nov 2022
Cited by 10 | Viewed by 4759
Abstract
Lithium secondary batteries have been the most successful energy storage devices for nearly 30 years. Until now, graphite was the most mainstream anode material for lithium secondary batteries. However, the lithium storage mechanism of the graphite anode limits the further improvement of the [...] Read more.
Lithium secondary batteries have been the most successful energy storage devices for nearly 30 years. Until now, graphite was the most mainstream anode material for lithium secondary batteries. However, the lithium storage mechanism of the graphite anode limits the further improvement of the specific capacity. The lithium metal anode, with the lowest electrochemical potential and extremely high specific capacity, is considered to be the optimal anode material for next-generation lithium batteries. However, the lifetime degradation and safety problems caused by dendrite growth have seriously hindered its commercialization. Carbon materials have good electrical conductivity and modifiability, and various carbon materials were designed and prepared for use in lithium metal batteries. Here, we will start by analyzing the problems and challenges faced by lithium metal. Then, the application progress and achievements of various carbon materials in lithium metal batteries are summarized. Finally, the research suggestions are given, and the application feasibility of carbon materials in metal lithium batteries is discussed. Full article
Show Figures

Figure 1

10 pages, 1847 KiB  
Article
An Exploratory Study of MoS2 as Anode Material for Potassium Batteries
by Lucia Fagiolari, Daniele Versaci, Federica Di Berardino, Julia Amici, Carlotta Francia, Silvia Bodoardo and Federico Bella
Batteries 2022, 8(11), 242; https://doi.org/10.3390/batteries8110242 - 17 Nov 2022
Cited by 15 | Viewed by 2642
Abstract
Potassium-based batteries represent one of the emerging classes of post-lithium electrochemical energy storage systems in the international scene, due to both the abundance of raw materials and achievable cell potentials not far from those of lithium batteries. In this context, it is important [...] Read more.
Potassium-based batteries represent one of the emerging classes of post-lithium electrochemical energy storage systems in the international scene, due to both the abundance of raw materials and achievable cell potentials not far from those of lithium batteries. In this context, it is important to define electrodes and electrolytes that give reproducible performance and that can be used by different research groups as an internal standard when developing new materials. We propose molybdenum disulfide (MoS2) as a valid anode choice, being a commercial and easily processable material, the 2D layered structure of which is promising for large potassium ions reversible storage. It has been proven to work for hundreds of cycles, keeping a constant specific capacity around 100 mAh g−1 while also preserving its electrochemical interphase and morphology. Full article
(This article belongs to the Collection Advances in Battery Materials)
Show Figures

Graphical abstract

15 pages, 3911 KiB  
Article
Online Identification of VLRA Battery Model Parameters Using Electrochemical Impedance Spectroscopy
by Javier Olarte, Jaione Martinez de Ilarduya, Ekaitz Zulueta, Raquel Ferret, Joseba Garcia-Ortega and Jose Manuel Lopez-Guede
Batteries 2022, 8(11), 238; https://doi.org/10.3390/batteries8110238 - 14 Nov 2022
Cited by 5 | Viewed by 2031
Abstract
This paper introduces the use of a new low-computation cost algorithm combining neural networks with the Nelder–Mead simplex method to monitor the variations of the parameters of a previously selected equivalent circuit calculated from Electrochemical Impedance Spectroscopy (EIS) corresponding to a series of [...] Read more.
This paper introduces the use of a new low-computation cost algorithm combining neural networks with the Nelder–Mead simplex method to monitor the variations of the parameters of a previously selected equivalent circuit calculated from Electrochemical Impedance Spectroscopy (EIS) corresponding to a series of battery aging experiments. These variations could be correlated with variations in the battery state over time and, therefore, identify or predict battery degradation patterns or failure modes. The authors have benchmarked four different Electrical Equivalent Circuit (EEC) parameter identification algorithms: plain neural network mapping EIS raw data to EEC parameters, Particle Swarm Optimization, Zview, and the proposed new one. In order to improve the prediction accuracy of the neural network, a data augmentation method has been proposed to improve the neural network training error. The proposed parameter identification algorithms have been compared and validated through real data obtained from a six-month aging test experiment carried out with a set of six commercial 80 Ah VLRA batteries under different cycling and temperature operation conditions. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Batteries)
Show Figures

Figure 1

19 pages, 4953 KiB  
Article
Deep Learning Classification of Li-Ion Battery Materials Targeting Accurate Composition Classification from Laser-Induced Breakdown Spectroscopy High-Speed Analyses
by Marie-Chloé Michaud Paradis, François R. Doucet, Steeve Rousselot, Alex Hernández-García, Kheireddine Rifai, Ouardia Touag, Lütfü Ç. Özcan, Nawfal Azami and Mickaël Dollé
Batteries 2022, 8(11), 231; https://doi.org/10.3390/batteries8110231 - 10 Nov 2022
Cited by 3 | Viewed by 2648
Abstract
Laser-induced breakdown spectroscopy (LIBS) is a valuable tool for the solid-state elemental analysis of battery materials. Key advantages include a high sensitivity for light elements (lithium included), complex emission patterns unique to individual elements through the full periodic table, and record speed analysis [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) is a valuable tool for the solid-state elemental analysis of battery materials. Key advantages include a high sensitivity for light elements (lithium included), complex emission patterns unique to individual elements through the full periodic table, and record speed analysis reaching 1300 full spectra per second (1.3 kHz acquisition rate). This study investigates deep learning methods as an alternative tool to accurately recognize different compositions of similar battery materials regardless of their physical properties or manufacturer. Such applications are of interest for the real-time digitalization of battery components and identification in automated manufacturing and recycling plant designs. Full article
(This article belongs to the Collection Advances in Battery Materials)
Show Figures

Graphical abstract

25 pages, 6215 KiB  
Article
What Differentiates Dielectric Oxides and Solid Electrolytes on the Pathway toward More Efficient Energy Storage?
by Antonio Nuno Guerreiro, Beatriz Arouca Maia, Hesham Khalifa, Manuela Carvalho Baptista and Maria Helena Braga
Batteries 2022, 8(11), 232; https://doi.org/10.3390/batteries8110232 - 10 Nov 2022
Cited by 7 | Viewed by 3183
Abstract
Taking advantage of electrode thicknesses well beyond conventional dimensions allowed us to follow the surface plasmonic THz frequency phenomenon with vacuum wavelengths of 100 μm to 1 mm, only to scrutinize them within millimeters-thicknesses insulators. Here, we analyze an Al/insulator/Cu cell in which [...] Read more.
Taking advantage of electrode thicknesses well beyond conventional dimensions allowed us to follow the surface plasmonic THz frequency phenomenon with vacuum wavelengths of 100 μm to 1 mm, only to scrutinize them within millimeters-thicknesses insulators. Here, we analyze an Al/insulator/Cu cell in which the metal electrodes-collectors were separated by a gap that was alternatively filled by SiO2, MgO, Li2O, Na3Zr2Si2PO12–NASICON, Li1.5Al0.5Ge1.5(PO4)3–LAGP, and Li2.99Ba0.005ClO–Li+ glass. A comparison was drawn using experimental surface chemical potentials, cyclic voltammetry (I-V plots), impedance spectroscopy, and theoretical approaches such as structure optimization, simulation of the electronic band structures, and work functions. The analysis reveals an unexpected common emergency from the cell’s materials to align their surface chemical potential, even in operando when set to discharge under an external resistor of 1842 Ω.cminsulator. A very high capability of the metal electrodes to vary their surface chemical potentials and specific behavior among dielectric oxides and solid electrolytes was identified. Whereas LAGP and Li2O behaved as p-type semiconductors below 40 °C at OCV and while set to discharge with a resistor in agreement with the Li+ diffusion direction, NASICON behaved as a quasi n-type semiconductor at OCV, as MgO, and as a quasi p-type semiconductor while set to discharge. The capacity to behave as a p-type semiconductor may be related to the ionic conductivity of the mobile ion. The ferroelectric behavior of Li2.99Ba0.005ClO has shown surface plasmon polariton (SPP) waves in the form of surface propagating solitons, as in complex phenomena, as well as electrodes’ surface chemical potentials inversion capabilities (i.e., χ (Al) − χ (Cu) > 0 to χ (Al) − χ (Cu) < 0 vs. Evacuum = 0 eV) and self-charge (ΔVcell ≥ +0.04 V under a 1842 Ω.cminsulator resistor). The multivalent 5.5 mm thick layer cell filled with Li2.99Ba0.005ClO was the only one to display a potential bulk difference of 1.1 V. The lessons learned in this work may pave the way to understanding and designing more efficient energy harvesting and storage devices. Full article
Show Figures

Figure 1

14 pages, 3348 KiB  
Article
High-Performance and Low-Cost Membranes Based on Poly(vinylpyrrolidone) and Cardo-Poly(etherketone) Blends for Vanadium Redox Flow Battery Applications
by Tong Mu, Shifan Leng, Weiqin Tang, Ning Shi, Guorui Wang and Jingshuai Yang
Batteries 2022, 8(11), 230; https://doi.org/10.3390/batteries8110230 - 10 Nov 2022
Cited by 6 | Viewed by 2112
Abstract
Energy storage systems have aroused public interest because of the blooming development of intermittent renewable energy sources. Vanadium redox flow batteries (VRFBs) are the typical candidates owing to their flexible operation and good cycle durability. However, due to the usage of perfluorinated separator [...] Read more.
Energy storage systems have aroused public interest because of the blooming development of intermittent renewable energy sources. Vanadium redox flow batteries (VRFBs) are the typical candidates owing to their flexible operation and good cycle durability. However, due to the usage of perfluorinated separator membranes, VRFBs suffer from both high cost and serious vanadium ions cross penetration. Herein, we fabricate a series of low-budget and high-performance blend membranes from polyvinylpyrrolidone (PVP) and cardo-poly(etherketone) (PEKC) for VFRB. A PEKC network gives the membrane excellent mechanical rigidity, while PVP endows the blend membranes with superior sulfonic acid uptake owing to the present N-heterocycle and carbonyl group in PVP, resulting in low area resistance. Meanwhile, blend membranes also display low vanadium ion permeability resulting from the electrostatic repulsion effect of protonated PVP polymer chains towards vanadium ions. Consequently, the 50%PVP-PEKC membrane has a high ionic selectivity of 1.03 × 106 S min cm−3, while that of Nafion 115 is nearly 17 times lower (6.03 × 104 S min cm−3). The VRFB equipped with 50%PVP-PEKC membrane has high coulombic efficiencies (99.3–99.7%), voltage efficiencies (84.6–67.0%) and energy efficiencies (83.9–66.8%) at current densities of 80–180 mA cm−2, and possesses excellent cycle constancy, indicating that low-cost x%PVP-PEKC blend membranes have a great application potentiality for VRFBs. Full article
(This article belongs to the Special Issue Promising Redox Flow Batteries)
Show Figures

Figure 1

13 pages, 3994 KiB  
Article
Thermal Propagation Modelling of Abnormal Heat Generation in Various Battery Cell Locations
by Ao Li, Anthony Chun Yin Yuen, Wei Wang, Jingwen Weng, Chun Sing Lai, Sanghoon Kook and Guan Heng Yeoh
Batteries 2022, 8(11), 216; https://doi.org/10.3390/batteries8110216 - 4 Nov 2022
Cited by 8 | Viewed by 2896
Abstract
With the increasing demand for energy capacity and power density in battery systems, the thermal safety of lithium-ion batteries has become a major challenge for the upcoming decade. The heat transfer during the battery thermal runaway provides insight into thermal propagation. A better [...] Read more.
With the increasing demand for energy capacity and power density in battery systems, the thermal safety of lithium-ion batteries has become a major challenge for the upcoming decade. The heat transfer during the battery thermal runaway provides insight into thermal propagation. A better understanding of the heat exchange process improves a safer design and enhances battery thermal management performance. This work proposes a three-dimensional thermal model for the battery pack simulation by applying an in-house model to study the internal battery thermal propagation effect under the computational fluid dynamics (CFD) simulation framework. The simulation results were validated with the experimental data. The detailed temperature distribution and heat transfer behaviour were simulated and analyzed. The thermal behaviour and cooling performance were compared by changing the abnormal heat generation locations inside the battery pack. The results indicated that various abnormal heat locations disperse heat to the surrounding coolant and other cells. According to the current battery pack setups, the maximum temperature of Row 2 cases can be increased by 2.93%, and the temperature difference was also increased. Overall, a new analytical approach has been demonstrated to investigate several stipulating battery thermal propagation scenarios for enhancing battery thermal performances. Full article
Show Figures

Figure 1

18 pages, 6797 KiB  
Article
Characteristic Prediction and Temperature-Control Strategy under Constant Power Conditions for Lithium-Ion Batteries
by Junfu Li, Shaochun Xu, Changsong Dai, Ming Zhao and Zhenbo Wang
Batteries 2022, 8(11), 217; https://doi.org/10.3390/batteries8110217 - 4 Nov 2022
Cited by 3 | Viewed by 1633
Abstract
Accurate characteristic prediction under constant power conditions can accurately evaluate the capacity of lithium-ion battery output. It can also ensure safe use for new-energy vehicles and electrochemical energy storage. As the battery voltage continues to drop under constant power conditions, the battery current [...] Read more.
Accurate characteristic prediction under constant power conditions can accurately evaluate the capacity of lithium-ion battery output. It can also ensure safe use for new-energy vehicles and electrochemical energy storage. As the battery voltage continues to drop under constant power conditions, the battery current output will accordingly increase, which brings a risk of thermal runaway in instances of weak heat dissipation. Therefore, knowing how to control the battery temperature is very critical for safe use. At present, the model-based method for characteristic prediction and temperature control has been used by most scholars, and that is also the key to this method. This work firstly extends a cell model to a pack-based electrochemical two-dimensional thermal coupling model, considering the heterogeneity of different cells inside the pack, and obtains the model parameters for a prismatic lithium-ion battery with a rated capacity of 42 Ah. Characteristic prediction under constant power conditions is then conducted based on an iterative solution method. Validations of characteristic prediction indicate the convenience of the developed models, with average absolute errors of voltage and temperature less than 36 mV and 0.4 K, respectively, and power error less than 0.005%. Finally, two model-based temperature feed-forward control strategies with lower cooling costs and shorter prediction times were developed based on the battery characteristic predictions, which leaves room for further controller development. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

12 pages, 2597 KiB  
Article
“In Situ” Formation of Zn Anode from Bimetallic Cu-Zn Alloy (Brass) for Dendrite-Free Operation of Zn-Air Rechargeable Battery
by Tibor Nagy, Lajos Nagy, Zoltán Erdélyi, Eszter Baradács, György Deák, Miklós Zsuga and Sándor Kéki
Batteries 2022, 8(11), 212; https://doi.org/10.3390/batteries8110212 - 3 Nov 2022
Cited by 7 | Viewed by 2247
Abstract
In this article, the performance of brass electrode was investigated in a Zn-air (charcoal-based cathode) rechargeable battery. The construction of the battery was carried out with biodegradable materials, namely a cotton cloth diaphragm and carboxymethyl cellulose sodium salt (CMC-Na) viscosity modifier, while the [...] Read more.
In this article, the performance of brass electrode was investigated in a Zn-air (charcoal-based cathode) rechargeable battery. The construction of the battery was carried out with biodegradable materials, namely a cotton cloth diaphragm and carboxymethyl cellulose sodium salt (CMC-Na) viscosity modifier, while the battery skeleton was printed by 3D printing technology. The brass acted as a collector and a preferable surface for the metallic Zn deposition on the brass anode surface. The electrochemical behavior of the brass anode was investigated by cyclic voltammetry (CV). Cyclic performance tests were carried out, which showed stable cell operation even in the presence or absence of additives up to more than 100 cycles. Furthermore, high energy (Eeff) and Coulomb (Ceff) efficiencies, 80% (Eeff), 95% (Ceff), 75% (Eeff), and 95% (Ceff) were obtained, respectively. The Shepherd model was applied to describe the discharging processes of the Zn-air battery containing brass as anode in the presence of additive-free electrolyte or electrolyte with CMC-Na salt additive. It was found that the Shepherd equation described only approximately the resulting discharge curves. In order to attain a more precise mathematical description, stretched exponential function was implemented into the last term of the Shepherd equation. The need for such a correction shows the complexity of the electrochemical processes occurring in these systems. In addition, the surface of the brass anode was also investigated by scanning electron microscopy (SEM) and the composition of the brass alloys was determined by X-ray fluorescence spectroscopy (XRF). Importantly, the formation of dendritic deposition was successfully suppressed and a smooth and uniform surface was obtained after the cycling tests. Full article
Show Figures

Figure 1

17 pages, 2930 KiB  
Article
Effects of Excessive Prelithiation on Full-Cell Performance of Li-Ion Batteries with a Hard-Carbon/Nanosized-Si Composite Anode
by Yusuke Abe, Ippei Saito, Masahiro Tomioka, Mahmudul Kabir and Seiji Kumagai
Batteries 2022, 8(11), 210; https://doi.org/10.3390/batteries8110210 - 2 Nov 2022
Cited by 2 | Viewed by 2176
Abstract
The effects of excessive prelithiation on the full-cell performance of Li-ion batteries (LIBs) with a hard-carbon/nanosized-Si (HC/N-Si) composite anode were investigated; HC and N-Si simply mixed at mass ratios of 9:1 and 8:2 were analyzed. CR2032-type half- and full-cells were assembled to evaluate [...] Read more.
The effects of excessive prelithiation on the full-cell performance of Li-ion batteries (LIBs) with a hard-carbon/nanosized-Si (HC/N-Si) composite anode were investigated; HC and N-Si simply mixed at mass ratios of 9:1 and 8:2 were analyzed. CR2032-type half- and full-cells were assembled to evaluate the electrochemical LIB anode behavior. The galvanostatic measurements of half-cell configurations revealed that the composite anode with an 8:2 HC/N-Si mass ratio exhibited a high capacity (531 mAh g−1) at 0.1 C and superior current-rate dependence (rate performance) at 0.1–10 C. To evaluate the practical LIB anode performance, the optimally performing composite anode was used in the full cell. Prior to full-cell assembly, the composite anodes were prelithiated via electrochemical Li doping at different cutoff anodic specific capacities (200–600 mAh g−1). The composite anode was paired with a LiNi0.5Co0.2Mn0.3O2 cathode to construct full-cells, the performance of which was evaluated by conducting sequential rate and cycling performance tests. Prelithiation affected only the cycling performance, without affecting the rate performance. Excellent capacity retention was observed in the full-cells with prelithiation conducted at cutoff anodic specific capacities greater than or equal to 500 mAh g−1. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Batteries)
Show Figures

Figure 1

18 pages, 6508 KiB  
Article
Physics-Based SoH Estimation for Li-Ion Cells
by Pietro Iurilli, Claudio Brivio, Rafael E. Carrillo and Vanessa Wood
Batteries 2022, 8(11), 204; https://doi.org/10.3390/batteries8110204 - 1 Nov 2022
Cited by 11 | Viewed by 3927
Abstract
Accurate state of health (SoH) estimation is crucial to optimize the lifetime of Li-ion cells while ensuring safety during operations. This work introduces a methodology to track Li-ion cells degradation and estimate SoH based on electrochemical impedance spectroscopy (EIS) measurements. Distribution of relaxation [...] Read more.
Accurate state of health (SoH) estimation is crucial to optimize the lifetime of Li-ion cells while ensuring safety during operations. This work introduces a methodology to track Li-ion cells degradation and estimate SoH based on electrochemical impedance spectroscopy (EIS) measurements. Distribution of relaxation times (DRT) were exploited to derive indicators linked to the so-called degradation modes (DMs), which group the different aging mechanisms. The combination of these indicators was used to model the aging progression over the whole lifetime (both in the “pre-knee” and “after-knee” regions), enabling a physics-based SoH estimation. The methodology was applied to commercial cylindrical cells (NMC811|Graphite SiOx). The results showed that loss of lithium inventory (LLI) is the main driving factor for cell degradation, followed by loss of cathode active material (LAMC). SoH estimation was achievable with a mean absolute error lower than 0.75% for SoH values higher than 85% and lower than 3.70% SoH values between 85% and 80% (end of life). The analyses of the results will allow for guidelines to be defined to replicate the presented methodology, characterize new Li-ion cell types, and perform onboard SoH estimation in battery management system (BMS) solutions. Full article
(This article belongs to the Collection Recent Advances in Battery Management Systems)
Show Figures

Figure 1

33 pages, 7304 KiB  
Review
Review of the Research Status of Cost-Effective Zinc–Iron Redox Flow Batteries
by Huan Zhang, Chuanyu Sun and Mingming Ge
Batteries 2022, 8(11), 202; https://doi.org/10.3390/batteries8110202 - 31 Oct 2022
Cited by 36 | Viewed by 5526
Abstract
Zinc–iron redox flow batteries (ZIRFBs) possess intrinsic safety and stability and have been the research focus of electrochemical energy storage technology due to their low electrolyte cost. This review introduces the characteristics of ZIRFBs which can be operated within a wide pH range, [...] Read more.
Zinc–iron redox flow batteries (ZIRFBs) possess intrinsic safety and stability and have been the research focus of electrochemical energy storage technology due to their low electrolyte cost. This review introduces the characteristics of ZIRFBs which can be operated within a wide pH range, including the acidic ZIRFB taking advantage of Fen+ with high solubility, the alkaline ZIRFB operating at a relatively high open-circuit potential and current densities, and the neutral ZIRFB providing a non-toxic, harmless, and mild environment. No matter what kind of ZIRFB, there are always zinc dendrites limiting areal capacity on the anode, which has become an obstacle that must be considered in zinc-based RFBs. Therefore, we focus on the current research progress, especially the summarizing and analysis of zinc dendrites, Fe(III) hydrolysis, and electrolytes. Given these challenges, this review reports the optimization of the electrolyte, electrode, membrane/separator, battery structure, and numerical simulations, aiming to promote the performance and development of ZIRFBs as a practical application technology. Based on these investigations, we also provide the prospects and development direction of ZIRFBs. Full article
(This article belongs to the Special Issue Redox Flow Batteries: Recent Advances and Perspectives)
Show Figures

Figure 1

19 pages, 1972 KiB  
Review
Examining the Benefits of Using Boron Compounds in Lithium Batteries: A Comprehensive Review of Literature
by Changlin (Allen) Zheng
Batteries 2022, 8(10), 187; https://doi.org/10.3390/batteries8100187 - 17 Oct 2022
Cited by 8 | Viewed by 7213
Abstract
Boron and boron compounds have been extensively studied together in the history and development of lithium batteries, which are crucial to decarbonization in the automotive industry and beyond. With a wide examination of battery components, but a boron-centric approach to raw materials, this [...] Read more.
Boron and boron compounds have been extensively studied together in the history and development of lithium batteries, which are crucial to decarbonization in the automotive industry and beyond. With a wide examination of battery components, but a boron-centric approach to raw materials, this review attempts to summarize past and recent studies on the following: which boron compounds are studied in a lithium battery, in which parts of lithium batteries are they studied, what improvements are offered for battery performance, and what improvement mechanisms can be explained. The uniqueness of boron and its extensive application beyond batteries contextualizes the interesting similarity with some studies on batteries. At the end, the article aims to predict prospective trends for future studies that may lead to a more extensive use of boron compounds on a commercial scale. Full article
Show Figures

Graphical abstract

13 pages, 2512 KiB  
Article
Time-Dependent Behavior of Waste Lithium-Ion Batteries in Secondary Copper Smelting
by Anna Klemettinen, Lassi Klemettinen, Radosław Michallik, Hugh O’Brien and Ari Jokilaakso
Batteries 2022, 8(10), 190; https://doi.org/10.3390/batteries8100190 - 17 Oct 2022
Viewed by 1580
Abstract
As the electrification sector expands rapidly, the demand for metals used in batteries is increasing significantly. New approaches for lithium-ion battery (LIB) recycling have to be investigated and new technologies developed in order to secure the future supply of battery metals (i.e., lithium, [...] Read more.
As the electrification sector expands rapidly, the demand for metals used in batteries is increasing significantly. New approaches for lithium-ion battery (LIB) recycling have to be investigated and new technologies developed in order to secure the future supply of battery metals (i.e., lithium, cobalt, nickel). In this work, the possibility of integrating LIB recycling with secondary copper smelting was further investigated. The time-dependent behavior of battery metals (Li, Co, Ni, Mn) in simulated secondary copper smelting conditions was investigated for the first time. In the study, copper alloy was used as a medium for collecting valuable metals and the distribution coefficients of these metals between copper alloy and slag were used for evaluating the recycling efficiencies. The determined distribution coefficients follow the order Ni >> Co >> Mn > Li throughout the time range investigated. In our study, the evolution of phases and their chemical composition were investigated in laboratory-scale experiments under reducing conditions of oxygen partial pressure p(O2) = 10−10 atm, at 1300 °C. The results showed that already after 1 h holding time, the major elements were in equilibrium. However, based on the microstructural observations and trace elements distributions, the required full equilibration time for the system was determined to be 16 h. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

13 pages, 2566 KiB  
Article
Repurposing Face Masks after Use: From Wastes to Anode Materials for Na-Ion Batteries
by Silvia Porporato, Mattia Bartoli, Alessandro Piovano, Nicolò Pianta, Alberto Tagliaferro, Giuseppe Antonio Elia, Riccardo Ruffo and Claudio Gerbaldi
Batteries 2022, 8(10), 183; https://doi.org/10.3390/batteries8100183 - 14 Oct 2022
Cited by 2 | Viewed by 2387
Abstract
Nowadays, face masks play an essential role in limiting coronavirus diffusion. However, their disposable nature represents a relevant environmental issue. In this work, we propose the utilization of two types of disposed (waste) face masks to prepare hard carbons (biochar) by pyrolytic conversion [...] Read more.
Nowadays, face masks play an essential role in limiting coronavirus diffusion. However, their disposable nature represents a relevant environmental issue. In this work, we propose the utilization of two types of disposed (waste) face masks to prepare hard carbons (biochar) by pyrolytic conversion in mild conditions. Moreover, we evaluated the application of the produced hard carbons as anode materials in Na-ion batteries. Pristine face masks were firstly analyzed through infrared spectroscopy and thermogravimetric analysis. The pyrolysis of both mask types resulted in highly disordered carbons, as revealed by field-emission scanning electron microscopy and Raman spectroscopy, with a very low specific surface area. Anodes prepared with these carbons were tested in laboratory-scale Na-metal cells through electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic cycling, displaying an acceptable specific capacity along a wide range of current regimes, with a good coulombic efficiency (>98% over at least 750 cycles). As a proof of concept, the anodes were also used to assemble a Na-ion cell in combination with a Na3V2(PO4)2F3 (NVPF) cathode and tested towards galvanostatic cycling, with an initial capacity of almost 120 mAhg−1 (decreasing at about 47 mAhg−1 after 50 cycles). Even though further optimization is required for a real application, the achieved electrochemical performances represent a preliminary confirmation of the possibility of repurposing disposable face masks into higher-value materials for Na-ion batteries. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the First Impact Factor of Batteries)
Show Figures

Figure 1

20 pages, 5682 KiB  
Article
Simulation, Set-Up, and Thermal Characterization of a Water-Cooled Li-Ion Battery System
by Max Feinauer, Nils Uhlmann, Carlos Ziebert and Thomas Blank
Batteries 2022, 8(10), 177; https://doi.org/10.3390/batteries8100177 - 12 Oct 2022
Cited by 3 | Viewed by 3467
Abstract
A constant and homogenous temperature control of Li-ion batteries is essential for a good performance, a safe operation, and a low aging rate. Especially when operating a battery with high loads in dense battery systems, a cooling system is required to keep the [...] Read more.
A constant and homogenous temperature control of Li-ion batteries is essential for a good performance, a safe operation, and a low aging rate. Especially when operating a battery with high loads in dense battery systems, a cooling system is required to keep the cell in a controlled temperature range. Therefore, an existing battery module is set up with a water-based liquid cooling system with aluminum cooling plates. A finite-element simulation is used to optimize the design and arrangement of the cooling plates regarding power consumption, cooling efficiency, and temperature homogeneity. The heat generation of an operating Li-ion battery is described by the lumped battery model, which is integrated into COMSOL Multiphysics. As the results show, a small set of non-destructively determined parameters of the lumped battery model is sufficient to estimate heat generation. The simulated temperature distribution within the battery pack confirmed adequate cooling and good temperature homogeneity as measured by an integrated temperature sensor array. Furthermore, the simulation reveals sufficient cooling of the batteries by using only one cooling plate per two pouch cells while continuously discharging at up to 3 C. Full article
Show Figures

Graphical abstract

34 pages, 7117 KiB  
Article
Thermal Modelling Utilizing Multiple Experimentally Measurable Parameters
by Anosh Mevawalla, Yasmin Shabeer, Manh Kien Tran, Satyam Panchal, Michael Fowler and Roydon Fraser
Batteries 2022, 8(10), 147; https://doi.org/10.3390/batteries8100147 - 29 Sep 2022
Cited by 61 | Viewed by 4014
Abstract
This paper presents three equivalent thermal circuit models with multiple input parameters, namely, the state of health (SOH), state of charge (SOC), current and temperature. Typical physiochemical models include parameters such as porosity and tortuosity, which are not easily experimentally available; this model [...] Read more.
This paper presents three equivalent thermal circuit models with multiple input parameters, namely, the state of health (SOH), state of charge (SOC), current and temperature. Typical physiochemical models include parameters such as porosity and tortuosity, which are not easily experimentally available; this model allows for model parameters such as the internal impedance to be easily estimated using more practical inputs. The paper models the internal impedance resistance of a LiFePO4 battery at five different ambient temperatures (5, 15, 25, 35, 45 °C), at three different discharge rates (1C, 2C, 3C) and at three different SOHs (90%, 83%, 65%). The internal impedance surface fit experimental measurements with a Pearson coefficient of 0.945. Three thermal models were then created that implemented the internal resistance model. The first two thermal models were 0D models that did not include the influence of the thermal conductivity of the battery. The first model assumed simple heating through internal resistance and convection energy loss, while the second also included the Bernardi Reversible heat term. The final third model was a 2D model that included all previous heat source terms as well as tab heating. The 2D model was solved using a simple Euler method and finite center difference. The R2 values for the 0D thermal models were 0.9964 and 0.9962 for the simple internal resistance and reversible heating models, respectively. The R2 value for the 2D thermal model was 0.996. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

15 pages, 6795 KiB  
Article
A Unified Power Converter for Solar PV and Energy Storage in dc Microgrids
by Sergio Coelho, Vitor Monteiro, Tiago J. C. Sousa, Luis A. M. Barros, Delfim Pedrosa, Carlos Couto and Joao L. Afonso
Batteries 2022, 8(10), 143; https://doi.org/10.3390/batteries8100143 - 25 Sep 2022
Cited by 3 | Viewed by 2296
Abstract
This paper deals with the development and experimental validation of a unified power converter for application in dc microgrids, contemplating the inclusion of solar photovoltaic (PV) panels and energy storage systems (ESS), namely batteries. Considering the limitations presented by the current structure of [...] Read more.
This paper deals with the development and experimental validation of a unified power converter for application in dc microgrids, contemplating the inclusion of solar photovoltaic (PV) panels and energy storage systems (ESS), namely batteries. Considering the limitations presented by the current structure of the power grid, mostly highlighted by the accentuated integration of emerging technologies (ESS, renewables, electric vehicles, and electrical appliances that natively operate in dc), it is extremely pertinent to adopt new topologies, architectures, and paradigms. In particular, decentralized power systems, unified topologies, and correspondent control algorithms are representative of a new trend towards a reduction in the number of power converters. Thus, the developed solution is designed to operaSAVE-15te at a nominal power of 3.6 kW, with a switching frequency of 100 kHz, and in four operation modes concerning power flow: (i) solar PV panels to batteries (PV2B); (ii) solar PV panels to dc grid (PV2G); (iii) batteries to dc grid (B2G); (iv) dc grid to batteries (G2B). Moreover, a dual active bridge converter guarantees galvanic isolation, while two back-end dc–dc converters are responsible for interfacing solar PV panels and batteries. The experimental validation of the proposed unified power converter proves its application value to self-consumption production units. Full article
(This article belongs to the Collection Advances in Battery Energy Storage and Applications)
Show Figures

Figure 1

19 pages, 2093 KiB  
Article
Organic Rankine Cycle as the Waste Heat Recovery Unit of Solid Oxide Fuel Cell: A Novel System Design for the Electric Vehicle Charging Stations Using Batteries as a Backup/Storage Unit
by Hossein Pourrahmani, Chengzhang Xu and Jan Van herle
Batteries 2022, 8(10), 138; https://doi.org/10.3390/batteries8100138 - 22 Sep 2022
Cited by 3 | Viewed by 2259
Abstract
The novelty of this study is to suggest a novel design for electric vehicle charging stations using fuel cell technology. The proposed system benefits from the Organic Rankine Cycle (ORC) to utilize the exhaust energy of the Solid Oxide Fuel Cell (SOFC) stacks [...] Read more.
The novelty of this study is to suggest a novel design for electric vehicle charging stations using fuel cell technology. The proposed system benefits from the Organic Rankine Cycle (ORC) to utilize the exhaust energy of the Solid Oxide Fuel Cell (SOFC) stacks in addition to the Lithium-Ion battery to improve the efficiency by partial-load operation of the stacks at night. The study is supported by the thermodynamic analysis to obtain the characteristics of the system in each state point. To analyze the operation of the system during the partial-load operation, the dynamic performance of the system was developed during the day. Furthermore, the environmental impacts of the system were evaluated considering eighteen parameters using a life-cycle assessment (LCA). LCA results also revealed the effects of different fuels and working fluids for the SOFC stacks and ORC, respectively. Results show that the combination of SOFC and ORC units can generate 264.02 kWh with the respective overall energy and exergy efficiencies of 48.96% and 48.51%. The suggested 264.02 kWh contributes to global warming (kg CO2 eq) by 5.17 × 105, 8.36 × 104, 2.5 × 105, 1.98 × 105, and 6.79 × 104 using methane, bio-methanol, natural gas, biogas, and hydrogen as the fuel of the SOFC stacks. Full article
Show Figures

Figure 1

12 pages, 3260 KiB  
Review
Redox Evolution of Li-Rich Layered Cathode Materials
by Liang Fang, Mingzhe Chen, Kyung-Wan Nam and Yong-Mook Kang
Batteries 2022, 8(10), 132; https://doi.org/10.3390/batteries8100132 - 21 Sep 2022
Cited by 10 | Viewed by 3312
Abstract
Li-rich layered oxides utilizing reversible oxygen redox are promising cathodes for high-energy-density lithium-ion batteries. However, they exhibit different electrochemical profiles before and after oxygen redox activation. Therefore, advanced characterization techniques have been developed to explore the fundamental understanding underlying their unusual phenomenon, such [...] Read more.
Li-rich layered oxides utilizing reversible oxygen redox are promising cathodes for high-energy-density lithium-ion batteries. However, they exhibit different electrochemical profiles before and after oxygen redox activation. Therefore, advanced characterization techniques have been developed to explore the fundamental understanding underlying their unusual phenomenon, such as the redox evolution of these materials. In this review, we present the general redox evolution of Li-rich layered cathodes upon activation of reversible oxygen redox. Various synchrotron X-ray spectroscopy methods which can identify charge compensation by cations and anions are summarized. The case-by-case redox evolution processes of Li-rich 3d/4d/5d transition metal O3 type layered cathodes are discussed. We highlight that not only the type of transition metals but also the composition of transition metals strongly affects redox behavior. We propose further studies on the fundamental understanding of cationic and anionic redox mixing and the effect of transition metals on redox behavior to excite the full energy potential of Li-rich layered cathodes. Full article
Show Figures

Figure 1

17 pages, 11524 KiB  
Article
Understanding Voltage Behavior of Lithium-Ion Batteries in Electric Vehicles Applications
by Foad H. Gandoman, Adel El-Shahat, Zuhair M. Alaas, Ziad M. Ali, Maitane Berecibar and Shady H. E. Abdel Aleem
Batteries 2022, 8(10), 130; https://doi.org/10.3390/batteries8100130 - 20 Sep 2022
Cited by 13 | Viewed by 5102
Abstract
Electric vehicle (EV) markets have evolved. In this regard, rechargeable batteries such as lithium-ion (Li-ion) batteries become critical in EV applications. However, the nonlinear features of Li-ion batteries make their performance over their lifetime, reliability, and control more difficult. In this regard, the [...] Read more.
Electric vehicle (EV) markets have evolved. In this regard, rechargeable batteries such as lithium-ion (Li-ion) batteries become critical in EV applications. However, the nonlinear features of Li-ion batteries make their performance over their lifetime, reliability, and control more difficult. In this regard, the battery management system (BMS) is crucial for monitoring, handling, and improving the lifespan and reliability of this type of battery from cell to pack levels, particularly in EV applications. Accordingly, the BMS should control and monitor the voltage, current, and temperature of the battery system during the lifespan of the battery. In this article, the BMS definition, state of health (SoH) and state of charge (SoC) methods, and battery fault detection methods were investigated as crucial aspects of the control strategy of Li-ion batteries for assessing and improving the reliability of the system. Moreover, for a clear understanding of the voltage behavior of the battery, the open-circuit voltage (OCV) at three ambient temperatures, 10 °C, 25 °C, and 45 °C, and three different SoC levels, 80%, 50%, and 20%, were investigated. The results obtained showed that altering the ambient temperature impacts the OCV variations of the battery. For instance, by increasing the temperature, the voltage fluctuation at 45 °C at low SoC of 50% and 20% was more significant than in the other conditions. In contrast, the rate of the OCV at different SoC in low and high temperatures was more stable. Full article
Show Figures

Figure 1

18 pages, 2468 KiB  
Article
A Novel Experimental Technique for Use in Fast Parameterisation of Equivalent Circuit Models for Lithium-Ion Batteries
by Mohammad Amin Samieian, Alastair Hales and Yatish Patel
Batteries 2022, 8(9), 125; https://doi.org/10.3390/batteries8090125 - 13 Sep 2022
Cited by 8 | Viewed by 2895
Abstract
Battery models are one of the most important tools for understanding the behaviour of batteries. This is particularly important for the fast-moving electrical vehicle industry, where new battery chemistries are continually being developed. The main limiting factor on how fast battery models can [...] Read more.
Battery models are one of the most important tools for understanding the behaviour of batteries. This is particularly important for the fast-moving electrical vehicle industry, where new battery chemistries are continually being developed. The main limiting factor on how fast battery models can be developed is the experimental technique used for collection of data required for model parametrisation. Currently, this is a very time-consuming process. In this paper, a fast novel parametrisation testing technique is presented. A model is then parametrised using this testing technique and compared to a model parametrised using current common testing techniques. This comparison is conducted using a WLTP (worldwide harmonised light vehicle test procedure) drive cycle. As part of the validation, the experiments were conducted at different temperatures and repeated using two different temperature control methods: climate chamber and a Peltier element temperature control method. The new technique introduced in this paper, named AMPP (accelerated model parametrisation procedure), is as good as GITT (galvanostatic intermittent titration technique) for parametrisation of ECMs (equivalent circuit models); however, it is 90% faster. When using experimental data from a climate chamber, a model parametrised using GITT was marginally better than AMPP; however, when using experimental data using conductive control, such as the ICP (isothermal control platform), a model parametrised using AMPP performed as well as GITT at 25 °C and better than GITT at 10 °C. Full article
Show Figures

Figure 1

23 pages, 32545 KiB  
Review
Toward Dendrite-Free Deposition in Zinc-Based Flow Batteries: Status and Prospects
by Zeyu Xu and Maochun Wu
Batteries 2022, 8(9), 117; https://doi.org/10.3390/batteries8090117 - 6 Sep 2022
Cited by 9 | Viewed by 6064
Abstract
Safe and low-cost zinc-based flow batteries offer great promise for grid-scale energy storage, which is the key to the widespread adoption of renewable energies. However, advancement in this technology is considerably hindered by the notorious zinc dendrite formation that results in low Coulombic [...] Read more.
Safe and low-cost zinc-based flow batteries offer great promise for grid-scale energy storage, which is the key to the widespread adoption of renewable energies. However, advancement in this technology is considerably hindered by the notorious zinc dendrite formation that results in low Coulombic efficiencies, fast capacity decay, and even short circuits. In this review, we first discuss the fundamental mechanisms of zinc dendrite formation and identify the key factors affecting zinc deposition. Then, strategies to regulate zinc deposition are clarified and discussed based on electrode, electrolyte, and membrane. The underlying mechanisms, advantages, and shortcomings of each strategy are elaborated. Finally, the remaining challenges and perspectives of zinc-based flow batteries are presented. The review may provide promising directions for the development of dendrite-free zinc-based flow batteries. Full article
(This article belongs to the Special Issue Redox Flow Batteries: Recent Advances and Perspectives)
Show Figures

Figure 1

26 pages, 11094 KiB  
Review
Echelon Utilization of Retired Power Lithium-Ion Batteries: Challenges and Prospects
by Ningbo Wang, Akhil Garg, Shaosen Su, Jianhui Mou, Liang Gao and Wei Li
Batteries 2022, 8(8), 96; https://doi.org/10.3390/batteries8080096 - 18 Aug 2022
Cited by 23 | Viewed by 4343
Abstract
The explosion of electric vehicles (EVs) has triggered massive growth in power lithium-ion batteries (LIBs). The primary issue that follows is how to dispose of such large-scale retired LIBs. The echelon utilization of retired LIBs is gradually occupying a research hotspot. Solving the [...] Read more.
The explosion of electric vehicles (EVs) has triggered massive growth in power lithium-ion batteries (LIBs). The primary issue that follows is how to dispose of such large-scale retired LIBs. The echelon utilization of retired LIBs is gradually occupying a research hotspot. Solving the issue of echelon utilization of large-scale retired power LIBs brings not only huge economic but also produces rich environmental benefits. This study systematically examines the current challenges of the cascade utilization of retired power LIBs and prospectively points out broad prospects. Firstly, the treatments of retired power LIBs are introduced, and the performance evaluation methods and sorting and regrouping methods of retired power LIBs are comprehensively reviewed for echelon utilization. Then, the problems faced by the scenario planning and economic research of the echelon utilization of retired power LIBs are analyzed, and value propositions are put forward. Secondly, this study summarizes the technical challenges faced by echelon utilization in terms of security, performance evaluation methods, supply and demand chain construction, regulations, and certifications. Finally, the future research prospects of echelon utilization are discussed. In the foreseeable future, technologies such as standardization, cloud technology, and blockchain are urgently needed to maximize the industrialization of the echelon utilization of retired power LIBs. Full article
(This article belongs to the Special Issue Trends and Prospects in Lithium-Ion Batteries)
Show Figures

Figure 1

18 pages, 2857 KiB  
Article
Effects of Cell Design Parameters on Zinc-Air Battery Performance
by Cian-Tong Lu, Zhi-Yan Zhu, Sheng-Wen Chen, Yu-Ling Chang and Kan-Lin Hsueh
Batteries 2022, 8(8), 92; https://doi.org/10.3390/batteries8080092 - 15 Aug 2022
Cited by 9 | Viewed by 3305
Abstract
Zn-air batteries have attracted considerable attention from researchers owing to their high theoretical energy density and the abundance of zinc on Earth. The modification of battery component materials represent a common approach to improve battery performance. The effects of cell design on cell [...] Read more.
Zn-air batteries have attracted considerable attention from researchers owing to their high theoretical energy density and the abundance of zinc on Earth. The modification of battery component materials represent a common approach to improve battery performance. The effects of cell design on cell performance are seldom investigated. In this study, we designed four battery structures as follows. Cell 1: close-proximity electrode, Cell 2: equal-area electrode, Cell 3: large zinc electrode, and Cell 4: air channel flow. The effects of four factors: (1) carbon paste, (2) natural and forced air convection, (3) anode/cathode area ratio, and (4) anode–cathode distance were also investigated. Results showed that the addition of carbon paste on the air side of 25BC increased cell power density under forced air convection. Moreover, cell performance also improved by increasing the anode/cathode ratio and by decreasing the anode–cathode distance. These four types of cells were compared based on the oxygen reduction reaction electrode area. Cell 3 displayed the highest power density. In terms of volumetric power density, the proximity cell (Cell 1) exhibited the highest power density among the cells. Therefore, this cell configuration may be suitable for portable applications. Full article
Show Figures

Figure 1

20 pages, 2663 KiB  
Article
Parameter Identification Method for a Fractional-Order Model of Lithium-Ion Batteries Considering Electrolyte-Phase Diffusion
by Yanbo Jia, Lei Dong, Geng Yang, Feng Jin, Languang Lu, Dongxu Guo and Minggao Ouyang
Batteries 2022, 8(8), 90; https://doi.org/10.3390/batteries8080090 - 14 Aug 2022
Cited by 6 | Viewed by 2312
Abstract
The physics-based fractional-order model (FOM) for lithium-ion batteries has shown good application prospects due to its mechanisms and simplicity. To adapt the model to higher-level applications, this paper proposes an improved FOM considering electrolyte-phase diffusion (FOMe) and then proposes a complete method for [...] Read more.
The physics-based fractional-order model (FOM) for lithium-ion batteries has shown good application prospects due to its mechanisms and simplicity. To adapt the model to higher-level applications, this paper proposes an improved FOM considering electrolyte-phase diffusion (FOMe) and then proposes a complete method for parameter identification based on three characteristic SOC intervals: the positive solid phase, negative solid phase, and electrolyte phase. The method mainly determines the above three characteristic intervals and identifies four thermodynamic parameters and five dynamic parameters. Furthermore, the paper describes a framework, which first verifies the model and parameter identification method separately based on pseudo two-dimensional model simulations, and secondly verifies FOMe and its parameters as a whole based on the experiments. The results, which are based on simulations and actual Li0.8Co0.1Mn0.1O2 lithium-ion batteries under multiple typical operating profiles and comparisons with other parameter identification methods, show that the proposed model and parameter identification method is highly accurate and efficient. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

15 pages, 4712 KiB  
Article
A Novel Evaluation Criterion for the Rapid Estimation of the Overcharge and Deep Discharge of Lithium-Ion Batteries Using Differential Capacity
by Peter Kurzweil, Bernhard Frenzel and Wolfgang Scheuerpflug
Batteries 2022, 8(8), 86; https://doi.org/10.3390/batteries8080086 - 9 Aug 2022
Cited by 5 | Viewed by 2691
Abstract
Differential capacity dQ/dU (capacitance) can be used for the instant diagnosis of battery performance in common constant current applications. A novel criterion allows state-of-charge (SOC) and state-of-health (SOH) monitoring of lithium-ion batteries during cycling. Peak values indicate impeding overcharge or [...] Read more.
Differential capacity dQ/dU (capacitance) can be used for the instant diagnosis of battery performance in common constant current applications. A novel criterion allows state-of-charge (SOC) and state-of-health (SOH) monitoring of lithium-ion batteries during cycling. Peak values indicate impeding overcharge or deep discharge, while dSOC/dU = dU/dSOC = 1 is close to “full charge” or “empty” and can be used as a marker for SOC = 1 (and SOC = 0) at the instantaneous SOH of the aging battery. Instructions for simple state-of-charge control and fault diagnosis are given. Full article
Show Figures

Figure 1

11 pages, 2266 KiB  
Article
Multi-Functional Potassium Ion Assists Ammonium Vanadium Oxide Cathode for High-Performance Aqueous Zinc-Ion Batteries
by Dan He, Tianjiang Sun, Qiaoran Wang, Tao Ma, Shibing Zheng, Zhanliang Tao and Jing Liang
Batteries 2022, 8(8), 84; https://doi.org/10.3390/batteries8080084 - 8 Aug 2022
Cited by 4 | Viewed by 2628
Abstract
Ammonium vanadium oxide (NH4V4O10) is a promising layered cathode for aqueous zinc-ion batteries owing to its high specific capacity (>300 mA h g−1). However, the structural instability causes serious cycling degradation through irreversible insertion/extraction of [...] Read more.
Ammonium vanadium oxide (NH4V4O10) is a promising layered cathode for aqueous zinc-ion batteries owing to its high specific capacity (>300 mA h g−1). However, the structural instability causes serious cycling degradation through irreversible insertion/extraction of NH4+. Herein, a new potassium ammonium vanadate Kx(NH4)1−xV4O10 (named KNVO) is successfully synthesized by a one-step hydrothermal method. The inserted of K+ can act as structural pillars, connect the adjacent layers closer and partially reduce the de-insertion of NH4+. Due to the multi-functional of K+, the prepared KNVO presents a high specific discharge capacity of 432 mA h g−1 at a current density of 0.4 A g−1, long cycle stability (2000 cycles, 94.2%) as well as impressive rate performance (200 mA h g−1 at 8 A g−1). Full article
(This article belongs to the Special Issue Zn-Ion and Zn–Air Batteries: Materials, Mechanisms and Applications)
Show Figures

Graphical abstract

18 pages, 2664 KiB  
Article
Influence of the Ambient Storage of LiNi0.8Mn0.1Co0.1O2 Powder and Electrodes on the Electrochemical Performance in Li-ion Technology
by Iratxe de Meatza, Imanol Landa-Medrano, Susan Sananes-Israel, Aitor Eguia-Barrio, Oleksandr Bondarchuk, Silvia Lijó-Pando, Iker Boyano, Verónica Palomares, Teófilo Rojo, Hans-Jürgen Grande and Idoia Urdampilleta
Batteries 2022, 8(8), 79; https://doi.org/10.3390/batteries8080079 - 28 Jul 2022
Cited by 2 | Viewed by 3632
Abstract
Nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) is one of the most promising Li-ion battery cathode materials and has attracted the interest of the automotive industry. Nevertheless, storage conditions can affect its properties and performance. In this work, both NMC811 [...] Read more.
Nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) is one of the most promising Li-ion battery cathode materials and has attracted the interest of the automotive industry. Nevertheless, storage conditions can affect its properties and performance. In this work, both NMC811 powder and electrodes were storage-aged for one year under room conditions. The aged powder was used to prepare electrodes, and the performance of these two aged samples was compared with reference fresh NMC811 electrodes in full Li-ion coin cells using graphite as a negative electrode. The cells were subjected to electrochemical as well as ante- and postmortem characterization. The performance of the electrodes from aged NM811 was beyond expectations: the cycling performance was high, and the power capability was the highest among the samples analyzed. Materials characterization revealed modifications in the crystal structure and the surface layer of the NMC811 during the storage and electrode processing steps. Differences between aged and fresh electrodes were explained by the formation of a resistive layer at the surface of the former. However, the ageing of NMC811 powder was significantly mitigated during the electrode processing step. These novel results are of interest to cell manufacturers for the widespread implementation of NMC811 as a state-of-the-art cathode material in Li-ion batteries. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries Aging Mechanisms, 2nd Edition)
Show Figures

Figure 1

15 pages, 3366 KiB  
Article
Characteristics of Open Circuit Voltage Relaxation in Lithium-Ion Batteries for the Purpose of State of Charge and State of Health Analysis
by David Theuerkauf and Lukas Swan
Batteries 2022, 8(8), 77; https://doi.org/10.3390/batteries8080077 - 26 Jul 2022
Cited by 12 | Viewed by 7630
Abstract
Open circuit voltage relaxation to a steady state value occurs, and is measured, at the terminals of a lithium-ion battery when current stops flowing. It is of interest for use in determining state of charge and state of health. As voltage relaxation can [...] Read more.
Open circuit voltage relaxation to a steady state value occurs, and is measured, at the terminals of a lithium-ion battery when current stops flowing. It is of interest for use in determining state of charge and state of health. As voltage relaxation can take several hours, a representative model and curve fitting is necessary for practical usage. Previous studies of lithium-ion voltage relaxation investigate four characteristics: relationship between voltage relaxation magnitude and state of charge; length of relaxation required; model complexity for state of charge estimation; and model complexity for state of health evaluation. However, previous studies have inconsistent methodology or use only one type of lithium-ion cell, making comparison and generalization difficult. To address this, we conducted 3 h and 24 h voltage relaxation experiments over a range of states of charge on three different lithium ion chemistries (nickel cobalt aluminum NCA; nickel manganese cobalt NMC532; lithium iron phosphate LFP) and fitted them with a new voltage relaxation equivalent circuit model. It was found that a 3 h relaxation period was sufficient for NMC and LFP for state of charge and state of health investigations. Voltage relaxation of the NCA cell continued to evolve past 24 h. It was shown that voltage relaxation shape and magnitude changes as a function of state of charge, and the accuracy of estimating state of charge was explored. Strategically choosing a state of charge for state of health assessment can be optimized to accentuate voltage relaxation magnitude and this differs by chemistry. This suggested technique and experimental findings can be paired with battery degradation studies to determine accuracy of assessing state of health. Full article
(This article belongs to the Collection Recent Advances in Battery Management Systems)
Show Figures

Graphical abstract

23 pages, 7713 KiB  
Review
Recent Health Diagnosis Methods for Lithium-Ion Batteries
by Yaqi Li, Jia Guo, Kjeld Pedersen, Leonid Gurevich and Daniel-Ioan Stroe
Batteries 2022, 8(7), 72; https://doi.org/10.3390/batteries8070072 - 15 Jul 2022
Cited by 7 | Viewed by 4171
Abstract
Lithium-ion batteries have good performance and environmentally friendly characteristics, so they have great potential. However, lithium-ion batteries will age to varying degrees during use, and the process is irreversible. There are many aging mechanisms of lithium batteries. In order to better verify the [...] Read more.
Lithium-ion batteries have good performance and environmentally friendly characteristics, so they have great potential. However, lithium-ion batteries will age to varying degrees during use, and the process is irreversible. There are many aging mechanisms of lithium batteries. In order to better verify the internal changes of lithium batteries when they are aging, post-mortem analysis has been greatly developed. In this article, we summarized the electrical properties analysis and post-mortem analysis of lithium batteries developed in recent years and compared the advantages of varieties of both destructive and non-destructive methods, for example, open-circuit-voltage curve-based analysis, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. On this basis, new ideas could be proposed for predicting and diagnosing the aging degree of lithium batteries, at the same time, further implementation of these technologies will support battery life control strategies and battery design. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries Aging Mechanisms, 2nd Edition)
Show Figures

Figure 1

25 pages, 3188 KiB  
Article
Determination of Internal Temperature Differences for Various Cylindrical Lithium-Ion Batteries Using a Pulse Resistance Approach
by Sebastian Ludwig, Marco Steinhardt and Andreas Jossen
Batteries 2022, 8(7), 60; https://doi.org/10.3390/batteries8070060 - 23 Jun 2022
Cited by 6 | Viewed by 4840
Abstract
The temperature of lithium-ion batteries is crucial in terms of performance, aging, and safety. The internal temperature, which is complicated to measure with conventional temperature sensors, plays an important role here. For this reason, numerous methods exist in the literature for determining the [...] Read more.
The temperature of lithium-ion batteries is crucial in terms of performance, aging, and safety. The internal temperature, which is complicated to measure with conventional temperature sensors, plays an important role here. For this reason, numerous methods exist in the literature for determining the internal cell temperature without sensors, which are usually based on electrochemical impedance spectroscopy. This study presents a method in the time domain, based on the pulse resistance, for determining the internal cell temperature by examining the temperature behavior for the cylindrical formats 18650, 21700, and 26650 in isothermal and transient temperature states for different states of charge (SOCs). A previously validated component-resolved 2D thermal model was used to analyze the location of the calculated temperature TR within the cell, which is still an unsolved question for pulse resistance-based temperature determination. The model comparison shows that TR is close to the average jelly roll temperature. The differences between surface temperature and TR depend on the SOC and cell format and range from 2.14K to 2.70K (18650), 3.07K to 3.85K (21700), and 4.74K to 5.45K (26650). The difference decreases for each cell format with increasing SOC and is linear dependent on the cell diameter. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Figure 1

17 pages, 4427 KiB  
Review
Recent Progress and Challenges of Flexible Zn-Based Batteries with Polymer Electrolyte
by Funian Mo, Binbin Guo, Wei Ling, Jun Wei, Lina Chen, Suzhu Yu and Guojin Liang
Batteries 2022, 8(6), 59; https://doi.org/10.3390/batteries8060059 - 18 Jun 2022
Cited by 15 | Viewed by 4418
Abstract
Zn-based batteries have been identified as promising candidates for flexible and wearable batteries because of their merits of intrinsic safety, eco-efficiency, high capacity and cost-effectiveness. Polymer electrolytes, which feature high solubility of zinc salts and softness, are especially advantageous for flexible Zn-based batteries. [...] Read more.
Zn-based batteries have been identified as promising candidates for flexible and wearable batteries because of their merits of intrinsic safety, eco-efficiency, high capacity and cost-effectiveness. Polymer electrolytes, which feature high solubility of zinc salts and softness, are especially advantageous for flexible Zn-based batteries. However, many technical issues still need to be addressed in Zn-based batteries with polymer electrolytes for their future application in wearable electronics. Recent progress in advanced flexible Zn-based batteries based on polymer electrolytes, including functional hydrogel electrolytes and solid polymer electrolytes, as well as the interfacial interactions between polymer electrolytes and electrodes in battery devices, is comprehensively reviewed and discussed with a focus on their fabrication, performance validation, and intriguing affiliated functions. Moreover, relevant challenges and some potential strategies are also summarized and analyzed to help inform the future direction of polymer-electrolyte-based flexible Zn-based batteries with high practicability. Full article
(This article belongs to the Special Issue Zn-Based Batteries: Recent Progresses and Challenges)
Show Figures

Figure 1

17 pages, 2919 KiB  
Article
Impact of Sulfur Infiltration Time and Its Content in an N-doped Mesoporous Carbon for Application in Li-S Batteries
by Jennifer Laverde, Nataly C. Rosero-Navarro, Akira Miura, Robison Buitrago-Sierra, Kiyoharu Tadanaga and Diana López
Batteries 2022, 8(6), 58; https://doi.org/10.3390/batteries8060058 - 17 Jun 2022
Cited by 10 | Viewed by 2775
Abstract
Li-S batteries are ideal candidates to replace current lithium-ion batteries as next-generation energy storage systems thanks to their high specific capacity and theoretical energy density. Composite electrodes based on carbon microstructures are often used as a host for sulfur. However, sulfur lixiviation, insoluble [...] Read more.
Li-S batteries are ideal candidates to replace current lithium-ion batteries as next-generation energy storage systems thanks to their high specific capacity and theoretical energy density. Composite electrodes based on carbon microstructures are often used as a host for sulfur. However, sulfur lixiviation, insoluble species formation, and how to maximize the sulfur-carbon contact in looking for improved electrochemical performance are still major challenges. In this study, a nitrogen doped mesoporous carbon is used as a host for sulfur. The S/C composite electrodes are prepared by sulfur melting-diffusion process at 155 °C. The effect of the sulfur melting-diffusion time [sulfur infiltration time] (1–24 h) and sulfur content (10–70%) is investigated by using XRD, SEM, TEM and TGA analyses and correlated with the electrochemical performance in Li-S cells. S/C composite electrode with homogeneous sulfur distribution can be reached with 6 h of sulfur melting-diffusion and 10 wt.% of sulfur content. Li-S cell with this composite shows a high use of sulfur and sufficient electronic conductivity achieving an initial discharge capacity of 983 mA h g−1 and Coulombic efficiency of 99% after 100 cycles. Full article
Show Figures

Figure 1

14 pages, 3600 KiB  
Article
Advanced Electrochemical Impedance Spectroscopy of Industrial Ni-Cd Batteries
by Nawfal Al-Zubaidi R-Smith, Manuel Kasper, Peeyush Kumar, Daniel Nilsson, Björn Mårlid and Ferry Kienberger
Batteries 2022, 8(6), 50; https://doi.org/10.3390/batteries8060050 - 29 May 2022
Cited by 4 | Viewed by 3728
Abstract
Advanced electrochemical impedance spectroscopy (EIS) was applied to characterize industrial Ni-Cd batteries and to investigate the electrochemical redox processes. A two-term calibration workflow was used for accurate complex impedance measurements across a broad frequency range of 10 mHz to 2 kHz, resulting in [...] Read more.
Advanced electrochemical impedance spectroscopy (EIS) was applied to characterize industrial Ni-Cd batteries and to investigate the electrochemical redox processes. A two-term calibration workflow was used for accurate complex impedance measurements across a broad frequency range of 10 mHz to 2 kHz, resulting in calibrated resistance and reactance values. The EIS calibration significantly improved the measurements, particularly at high frequencies above 200 Hz, with differences of 6–8% to the uncalibrated impedance. With an electromagnetic finite element method (FEM) model, we showed that the impedance is strongly influenced by the cable fixturing and the self-inductance of the wire conductors due to alternating currents, which are efficiently removed by the proposed calibration workflow. For single cells, we measured the resistance and the reactance with respect to the state-of-charge (SoC) at different frequencies and a given rest period. For Ni-Cd blocks that include two cells in series, we found good agreement of EIS curves with single cells. As such, EIS can be used as a fast and reliable method to estimate the cell or block capacity status. For electrochemical interpretation, we used an equivalent electric circuit (EEC) model to fit the impedance spectra and to extract the main electrochemical parameters based on calibrated EIS, including charge-transfer kinetics, mass transport, and ohmic resistances. From the charge-transfer resistance, we computed the exchange current density, resulting in 0.23 A/cm2, reflecting high intrinsic rates of the redox electron transfer processes in Ni-Cd cells. Full article
Show Figures

Figure 1

14 pages, 3459 KiB  
Article
Impact of Full Prelithiation of Si-Based Anodes on the Rate and Cycle Performance of Li-Ion Capacitors
by Takuya Eguchi, Ryoichi Sugawara, Yusuke Abe, Masahiro Tomioka and Seiji Kumagai
Batteries 2022, 8(6), 49; https://doi.org/10.3390/batteries8060049 - 27 May 2022
Cited by 5 | Viewed by 3288
Abstract
The impact of full prelithiation on the rate and cycle performance of a Si-based Li-ion capacitor (LIC) was investigated. Full prelithiation of the anode was achieved by assembling a half cell with a 2 µm-sized Si anode (0 V vs. Li/Li+) [...] Read more.
The impact of full prelithiation on the rate and cycle performance of a Si-based Li-ion capacitor (LIC) was investigated. Full prelithiation of the anode was achieved by assembling a half cell with a 2 µm-sized Si anode (0 V vs. Li/Li+) and Li metal. A three-electrode full cell (100% prelithiation) was assembled using an activated carbon (AC) cathode with a high specific surface area (3041 m2/g), fully prelithiated Si anode, and Li metal reference electrode. A three-electrode full cell (87% prelithiation) using a Si anode prelithiated with 87% Li ions was also assembled. Both cells displayed similar energy density levels at a lower power density (200 Wh/kg at ≤100 W/kg; based on the total mass of AC and Si). However, at a higher power density (1 kW/kg), the 100% prelithiation cell maintained a high energy density (180 Wh/kg), whereas that of the 87% prelithiation cell was significantly reduced (80 Wh/kg). During charge/discharge cycling at ~1 kW/kg, the energy density retention of the 100% prelithiation cell was higher than that of the 87% prelithiation cell. The larger irreversibility of the Si anode during the initial Li-ion uptake/release cycles confirmed that the simple full prelithiation process is essential for Si-based LIC cells. Full article
(This article belongs to the Special Issue Li-Ion Capacitors: Materials, Devices and Systems)
Show Figures

Figure 1

14 pages, 3963 KiB  
Article
Numerical and Experimental Evaluation of a Battery Cell under Impact Load
by Adrian Daniel Muresanu and Mircea Cristian Dudescu
Batteries 2022, 8(5), 48; https://doi.org/10.3390/batteries8050048 - 20 May 2022
Cited by 8 | Viewed by 4020
Abstract
Impact damage is one of the most critical scenarios for the lithium-ion battery pack of an electrical vehicle, as it involves mechanical abusive loads with serious consequences on electrical and thermal stability. The development of a numerical model for an explicit dynamic simulation [...] Read more.
Impact damage is one of the most critical scenarios for the lithium-ion battery pack of an electrical vehicle, as it involves mechanical abusive loads with serious consequences on electrical and thermal stability. The development of a numerical model for an explicit dynamic simulation of a Li-ion battery pack under impact implies a significant computational effort if detailed models of a single battery cell are employed. The present paper presents a homogenized finite element model of a battery cell, validated by experimental tests of individual materials and an impact test of an entire cell. The macro model is composed of shell elements representing outside casing and elements with a homogenized and isotropic material for the jelly roll. The displacements and deformed shape of the numerical model of the battery cell were compared with those measured on real test specimens; full-field optical scanning was employed to reconstruct the 3D shape of the deformed battery. The overall deformation of the simulation and experimental results are comparable with a deviation of the maximum intrusion of 14.8% for impact direction and 19.5% for the perpendicular direction considering the cumulative effects of simplifying hypotheses of the numerical model and experimental side effects. The results are a starting point for future analyses of a battery pack and its protection systems under impact. The model presented in this paper, considering the low computing power needed for calculation and acceptable mesh size for crash, should be able to be used in bigger resources consuming crash simulation models. In this way, the cells’ deformation and behavior can be tracked more easily for safety management and diagnosis of the crashworthiness of the packs or car batteries. Full article
(This article belongs to the Topic Safety of Lithium-Ion Batteries)
Show Figures

Figure 1

Back to TopTop