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Abstract: Laser-induced breakdown spectroscopy (LIBS) is a valuable tool for the solid-state elemental
analysis of battery materials. Key advantages include a high sensitivity for light elements (lithium
included), complex emission patterns unique to individual elements through the full periodic table,
and record speed analysis reaching 1300 full spectra per second (1.3 kHz acquisition rate). This
study investigates deep learning methods as an alternative tool to accurately recognize different
compositions of similar battery materials regardless of their physical properties or manufacturer. Such
applications are of interest for the real-time digitalization of battery components and identification in
automated manufacturing and recycling plant designs.

Keywords: laser-induced breakdown spectroscopy; Li-ion; artificial intelligence; deep learning; active
material; solid-state electrolyte

1. Introduction

Rechargeable batteries are pivotal to grid-scale applications and greener transportation
systems [1]. With the exponential growth of the battery industry, battery material producers
are facing an ever-increasing demand for high-technology materials. Furthermore, raw
materials entering production processes and supplied active materials need to stringent
quality control. Quality control is a mandatory, albeit time-consuming, operation and
requires time-efficient analytical methods.

Along with manufacturing concerns, Li-ion batteries should be integrated into a circu-
lar economy where recycling the different components must be done in a safe and efficient
way. The variety of battery chemistries with numerous kinds of active materials can bur-
den both manufacturing and recycling processes with several separation and purification
steps. The qualification of battery chemistries prior to the shredding process or analysis
of the black mass thus relies on using a fast and reliable analytical tool. Instruments and
techniques used for composition validation are not all applicable to automated processes,
especially when such instruments cannot reach real-time sensing, a crucial parameter in
automation [2,3].

For example, X-ray diffraction (XRD) is a useful instrument to obtain structural/micros
tructural information and is often used to assess the purity of crystalline materials. XRD is
a crucial instrument for the synthesis and quality control of Li-ion battery components and
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during cycling. Although XRD is crucial for quantitative failure analysis, the need to gather
data on elemental contents to diagnose impurities and direct Li contents, even in amor-
phous materials, is crucial. Other techniques, such as X-ray photoelectron spectroscopy
(XPS) or scanning electron microscope–energy dispersive spectroscopy (SEM-EDS), are
key tools for battery research, but require long analysis times and special experimental
conditions. Methods used for content validation such as induced-coupled plasma methods
are high-maintenance; they require gas vectors, long digestion of samples, and special
clean laboratory conditions, and they do not provide any spatial information. Furthermore,
tubing needs to be changed regularly and parts such as the plasma torch need to be cleaned,
in aqua regia, for instance, for hours. Overall, available technologies lack sensitivity to
lithium contents, are high-maintenance, and/or require long analysis times; thus, they do
not generate a massive amount of information at reasonable speeds.

A more versatile elemental content analyzer with low analysis speeds could be com-
plementary to such analysis for better diagnosis. Recent advances in the manufacturing of
laser-induced breakdown spectroscopy (LIBS) instruments have brought this technology to
the frontier of high-throughput data gathering. For example, we recently reported LIBS
mappings at speeds reaching 1 ms per pixel [4,5]. This technology is based on atomic emis-
sion spectroscopy, which means multiple transition energies can be detected per element,
making this technique highly specific. All elements can be detected, and light elements
exhibit a particularly sensitive LIBS signal down to mid ppb. For example, lithium has
been quantified using a high-throughput ELEMISSION instrument, with high accuracy in
spodumene minerals, which are raw material for Li-ion battery materials manufacturing [6].
Despite being a promising analytical technique, very few studies of LIBS applied to energy
storage applications have been reported in the literature. For research applications, LIBS
has been mainly applied for lithium quantification of (Cr, Mo) doped-Li(Ni1-x-yMnxCoy)O2
(NMC) [7], LiCoO2 (LCO) [8], micro-structures at laminated positive electrodes [9–12], and
graphite negative electrodes [13–15]. Lithium contents in solid-state electrolyte interphases
have also been studied by Hou et al. using a femtosecond LIBS instrument at a reported
0.7 µm depth resolution [16]. For process applications, LIBS has been studied for heavy
metal contents in Zn-Mn batteries [17] and Pb contents in polypropylene from car battery
solid wastes [18].

A very powerful advantage of using LIBS instruments is that individual emission
spectra are very complex and specific, such as fingerprints of the elemental makeup of the
analyzed samples. However, due to the ruggedness of samples and high sensitivity to even
trace amounts of certain elements, the question of whether LIBS analysis can be used to
differentiate similar compositions of pure battery materials arises. A study of the practical
sensitivity of the LIBS technology must be performed on a range of battery materials to
test whether this technique can be applied to analyses of composition and trace elements
contents for recycling digitalization, as well as manufacturing quality assurance and quality
control. For composition studies, artificial intelligence algorithms can be put to the test to
improve accuracy results, speed up the compositional study, and extend applications of the
LIBS technology to any target, regardless of changes in analytical parameters.

Each element exhibits unique atomic emission patterns, and these patterns are ideal
inputs to artificial intelligence algorithms. Algorithms such as the angle mapper (AM) [19],
support vector machine (SVM) [20,21], and random forest (RF) [22] have been used to
accurately automate the identification of different mineral phases. Despite exhibiting
interesting results, shallow machine learning algorithms do not allow a high control of the
bias because only a few hyperparameters are typically required. Overall, poor control on
underfitting and overfitting arises, especially when working with highly complex LIBS
spectra. A typical issue is that spectra can be assigned to the wrong class due to fitting the
model on background noises or signals from impurities.

A solution is to use artificial neural networks, or even deep learning architecture to
solve classification issues in LIBS spectra of similar composition materials.
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Algorithms such as artificial neural networks (ANN) show promising capabilities in
the literature when applied to mineral [23] and iron ore [24] classification. The number of
activation units is a controllable hyperparameter that provides certain control of the fitting
function. A further step is to increase the number of layers of activation function between
the input and output layers. Methods that use deep artificial neural networks are also
referred to as deep learning. Ultimate control of the bias is provided by deep learning, as
many hyperparameters can be tuned to manage an accurate fitting function. For example,
increasing the number of units per layer or number of layers, adding a bottleneck archi-
tecture, varying the type of activation functions, etc. all allow better fitting of the trained
function. A particular example of deep neural network architectures is the convolutional
neural network (CNN), where different parts of the inputs to a convolutional layer are
processed in the same way through shared weights. To date, there has been no investigation
of the impact of the above parameters on LIBS spectra classification. As a general tendency,
researchers typically jump into deep learning by providing a complex successful CNN
architecture without reporting the performance of a simpler and faster architecture. As
a matter of fact, papers on classification pairing LIBS and deep learning seldom report
a simpler architecture than CNN and rarely report overfitting studies. In the same way,
successful mineral classifications have been reported using a CNN architecture [25–29].
To apply this to synthetic materials such as battery materials, a more thorough study is
needed, as pure contents are available, which means simpler deep learning architecture
with similar accuracies could be used instead of CNN to speed up processing times.

Most of the literature on the classification of LIBS spectra has been reported on alloys
or minerals. Natural mineral phases bear impurities, textures, and grain sizes that are
different than synthetic inorganic materials. Furthermore, the low variation of LIBS spectra
in battery material phases at different states of lithiation is expected to be much harder to
classify with high accuracy than natural materials. The high purity of battery materials
and small variations in different compositions provides a unique opportunity to study
underfitting and overfitting in controlled samples using deep learning algorithms. The aim
of this work is to compare the performance of different machine learning algorithms and
deep learning architectures for the classification of different battery materials, and more
importantly for the industry, to classify different compositions of the same battery material.
For example, different phases of NMC (namely LiNi1-x-yMnxCoyO2, where x and y are
respectively 0.33 and 0.33 (NMC111); 0.3 and 0.2 (NMC532); 0.2 and 0.2 (NMC622); and
0.1 and 0.1 (NMC811)) are commercially available and expected to exhibit very little Ni,
Mn, and Co transition line changes, making the classification step even more challenging.
The different compositions were thus used to build and validate the artificial intelligence
classification method.

2. Materials and Methods
2.1. Sample Preparation and Materials

Different battery materials described in Table 1 were used for this study. The samples
were kept inside a glove box and dried prior to pressing. Two solid-state electrolytes (LATP
and LLTO) and five cathode active materials (LFP, LTO, LCO, LMO, and NCA, as well
as four NMC compositions) were pelletized using a 1 1

2 inch die, prior to LIBS analysis
with a 25-ton hydraulic pressure and final thickness of 0.2–0.5 cm. The apparatus was
thoroughly cleaned between samples. Three NMC111, two NMC532, and two NMC622
samples from different manufacturers were pelletized, and then analyzed on separate days
to introduce variance.
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Table 1. Summary of the analyzed battery material samples.

Material Acronym Empirical Formula Use Provenance

LATP Li1.3Al0.3Ti1.7(PO4)3 Solid-state
electrolytes

Commercial manufacturer
LLTO La0.57Li0.29TiO3 Commercial manufacturer

LFP LiFePO4

Cathode
active

material

Commercial manufacturer
LTO Li4Ti5O12 Commercial manufacturer
LCO LiCoO2 Commercial manufacturer
LMO LiMn2O4 Commercial manufacturer
NCA LiNiCoAlO2 Commercial manufacturer

NMC111-M1 LiNi0.33Mn0.33Co0.33O2 Commercial manufacturer 1
NMC111-M2 LiNi0.33Mn0.33Co0.33O2 Commercial manufacturer 2
NMC111-M3 LiNi0.33Mn0.33Co0.33O2 Commercial manufacturer 3
NMC532-M1 LiNi0.5Mn0.3Co0.2O2 Commercial manufacturer 1
NMC532-M2 LiNi0.5Mn0.3Co0.2O2 Commercial manufacturer 2
NMC622-M1 LiNi0.6Mn0.2Co0.2O2 Commercial manufacturer 1
NMC622-M2 LiNi0.6Mn0.2Co0.2O2 Commercial manufacturer 2

NMC811 + Nb coating LiNi0.8Mn0.1Co0.1O2 + Nb Commercial manufacturer

2.2. Laser-Induced Breakdown Spectroscopy Instrumentation

The LIBS analysis was performed on the pelletized battery materials using the CORIOS-
ITY LIBS instrument (ELEMISSION Inc., Montréal, QC, Canada), shown in Figure 1. The
instrument’s parameters are listed in Table 2. The spectral range covered by the LIBS
instrument is 210–940 nm. A 0.5 cm2 zone was analyzed at 50 microns steps, resulting in
the acquisition of 10,000 pixels, thus 10,000 spectra per sample. Some pellets were brittle,
depending on the composition and moisture of the battery materials analyzed. As the
robustness of the artificial intelligence algorithms was at stake in this study, naturally
occurring variances and varying experimental parameters were welcomed.

Figure 1. A CORIOSITY LIBS instrument by ELEMISSION.

2.3. Machine Learning Methods

All calculations were performed on NVIDIA P100 Pascal GPUs and Intel E5-2650
v4 Broadwell @ 2.2 GHz CPUs on Compute Canada’s Graham cluster. Machine learning
algorithms and deep learning frameworks were coded using Python (NumPy, scikit-learn,
Keras, and TensorFlow libraries).
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Table 2. CORIOSITY LIBS analysis principal parameters.

Laser energy 1 mJ/pulse
Laser source wavelength 1064 nm

Acquisition rate 1300 Hz
Spatial resolution 50 µm

Rayleigh zone (depth of field) 6 mm
Working distance (optical window-sample

surface) 250 mm

Dwell time 770 µs
Step size 50 µm

Surface analyzed 0.5 cm2

Scanning speed in real time 0.77 ms/pixel

2.3.1. Training, Testing, and Validation Sets

For each iteration, 500 spectra were first randomly chosen from the 10,000 spectra per
sample to lower computation times and introduce random variance to the training process,
and 500 additional random spectra were chosen for validation. The first 500 spectra were
then randomly categorized as training or testing sets. The size of the training/testing
sets was set to ratios varying between 99/1 and 50/50 for succeeding experiments. Each
ratio was iterated 10 times, resetting the 500 initial spectra per class, and subsequently, the
training/testing sets and validation sets. The train, test, and validation sizes at different
train set sizes are listed in Table 3.

Table 3. Number of samples per set, all randomized from 10 000 spectra at each iteration.

Train Set Size Samples in the
Train Set

Samples in the
Test Set

Samples in the
Validation Set

0.01 5 495 500
0.02 10 490 500
0.05 25 475 500
0.10 50 450 500
0.20 100 400 500
0.50 250 250 500

2.3.2. Normalization on Single Transition Lines

Prior to training, selected transition lines were subjected to a simple background
removal step. Then, selected transition lines for Ni, Mn, Co, Al, Fe, Ti, and La were
normalized by the intensity of the Li transition line at 610.29 nm.

2.3.3. Normalization on Full Spectra

Prior to training, spectra were normalized to their norm, as in Equation (1). This
normalization has the purpose of easing calculations in algorithms dependent on dot
product calculations. It also has the purpose of normalizing the intensity of the spectrum
of pixels with low signal-to-noise ratios.

SN =
S√

∑n
i=1 si

2
(1)

considering S is the initial intensity spectrum collected per pixel where S = [s1 , s2 , s3 , . . . , sn]
and SN is the norm normalized spectrum.

2.3.4. Angle Mapper (AM)

The AM calculates the angle between spectra arrays and reference spectra, in this case,
the mean spectra of the training sets. Classification was done by assigning test spectra to
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reference spectra with which the angle was closest to zero. A similar algorithm was used
by Meima et al. (2020) for mineral classification of chromitite ore samples [19].

2.3.5. Support Vector Machine (SVM)

The SVM algorithm computes planes between clusters of multidimensional data
during training. The kernel trick computes the planes to a Hilbert space for data hardly
separated in the initial space. Typical kernel types used with SVM are Linear, Polynomial,
Gaussian, or Sigmoid in the scikit-learn Python library. A third-degree polynomial kernel
was used for this study. SVM has been used many times for LIBS spectra classification,
notably for the ChemCam instrument used by the Curiosity rover on Mars [20].

2.3.6. Random Forest (RF)

RF trains several decision tree classifiers with individually randomized sub-samples
from the training set. The trees are then combined for the prediction task. This technique
is called bootstrapping and is used to introduce variance and limit overfitting issues. The
number of trees, as well as the depth of the trees and other parameters, can be tuned to
improve the classification task and computation times. RF is a common classifier used in
the LIBS literature for its high accuracy. It was recently used by Janovszky et al. (2021) to
classify granitoid rocks by their lithium and beryllium contents [22].

2.3.7. Deep Learning Architectures

All four architectures were built using Keras model building, with the layers described
in Table 4. Two types of input were tested using the same architectures to investigate
whether selecting a few transition lines with background removal might improve classifi-
cation performances. The first input was thus an array of seven selected transition lines
describing the elemental content of the analyzed samples, and the second input was the
full spectra normalized to their norm. The parameters described were chosen following
a preselection of working algorithms. For example, 128 units for the DNN1 algorithm
showed slightly better accuracies than using 32 units, but the difference was unsubstantial
and relied too much on variance to be included in the paper. Therefore, the parameters
were somewhat optimized before being iterated many times to offer discussable results
without overloading the manuscript. Parameters were dismissed if they provided little to
no improvement or if their use was already established in the literature (such as the use of
the Adam optimizer instead of its parent gradient descent). The parameters of the CNN
layers were chosen based on the work of Zhao et al. (2021), which classified iron ores using
the LIBS technology [29].

Table 4. Parameters of each machine learning and deep learning method.

Angle Mapper (AM) - Mean spectra of the training set classes are assigned as reference spectra

Support Vector Machine (SVM) - Polynomial kernel

Random Forest (RF) - 100 trees classification
- No constraint on the tree depth

Deep Neural Networks 1 (DNN1)

- Input 1: 7 intensity value array with background removal
- Input 2: 3653 normalized intensity value array
- Batch normalization
- Layer 1: 128 units, ReLU activation
- Output: 11 classes one-hot vectors, Softmax activation
- Optimizer: Adam
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Table 4. Cont.

Deep Neural Networks 2 (DNN2)

- Input 1: 7 intensity values array with background removal
- Input 2: 3653 normalized intensity values array
- Batch normalization
- Layer 1: 128 units, ReLU activation
- Layer 2: 32 units, ReLU activation
- Output: 11 classes one-hot vectors, Softmax activation
- Optimizer: Adam

Deep Neural Networks 3 (DNN3)

- Input 1: 7 intensity values array with background removal
- Input 2: 3653 normalized intensity values array
- Batch normalization
- Layer 1: 128 units, ReLU activation
- Layer 2: 64 units, ReLU activation
- Layer 3: 32 units, ReLU activation
- Output: 11 classes one-hot vectors, Softmax activation
- Optimizer: Adam

Convolutional Neural Networks (CNN1)

- Input 1: 7 intensity values array with background removal
- Input 2: 3653 normalized intensity values array
- Convolution 1: 20 filters, 1 × 50 kernel size, ReLU activation
- Batch normalization
- MaxPooling 1: 1 × 4
- Layer 3: Flatten
- Layer 4: 128 units, ReLU activation
- Layer 5: 32 units, ReLU activation
- Output: 11 classes one-hot vectors, Softmax activation
- Optimizer: Adam

2.3.8. Training and Testing Times

The training and testing times reported in Supplementary Materials are respectively
the total times needed to train each algorithm, and the times needed to predict all three
training, testing, and validation sets (1000 spectra).

3. Results and Discussion
3.1. LIBS Spectra of Different Battery Materials

After analyzing the different pelletized materials using the CORIOSITY instrument,
typical spectra were obtained for each type of material. Mean spectra of each material type
and available compositions can be seen in Figure 2. Each material contained high amounts
of Li, as expected for Li-ion battery materials. This was confirmed by the high intensity of
the characteristic Li transition lines at 610.29, 670.81, and 812.65 nm. Measurements were
not performed under argon conditions because testing the accuracy of different algorithms
under variable conditions is better without controlled conditions. Furthermore, a controlled
atmosphere is not optimal for an ultra-fast process analysis such as sensors placed on the
conveyor belt. Thus, the oxygen emission line is visible for all spectra at 777.61 nm. The
emission pattern of La is clearly visible on the LLTO spectrum, with a vast number of
emission lines observed, including several diatomic molecular band emissions in the near
infrared (possible diatomic fragment emission of La2, LaF, LaO, and/or LaS). The emission
pattern of Ti was also observable from 300 to 341 nm on the LATP and LTO spectra. LCO,
LMO, and NCA spectra were useful in identifying the transition lines of Ni, Mn, and
Co in NMC materials and later identifying specific lines for some machine learning and
deep learning algorithms. NMC111, NMC532, NMC622, and NMC811 exhibited similar
Mn+Ni+Co patterns, which showed how their respective classifications were challenging.
In Figure 3, for example, NMC532 and NMC622 mean spectra are overlapped to show the
similarity of their patterns in the 215 to 410 nm wavelength range.
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Figure 2. LIBS mean spectra of all the battery materials analyzed using the described method between
215 and 940 nm.

Figure 3. LIBS mean spectra of NMC532 and NMC622 between: (A) 215 and 415 nm and (B) 335 and
365 nm.

3.2. Li Transition Lines in Active Material Pellets

The LIBS technology has a high potential for lithium quantification in synthetic ma-
terials. To build a content analysis method, transition lines having a linear response to
contents needed to be calibrated in the expected range. Due to plasma phenomena, such as
self-absorption, temperature, surface rugosity, and microscopic changes in focus, a good
practice is to output the calibrated intensities of secondary elements normalized to a main
component of the sample. For instance, using one of the Li transitions lines to normalize
Al, Ni, Mn, Co, Fe, etc. contents in Li-ion battery materials is a good practice because
of the high Li content, the LIBS instrument’s high sensitivity to Li, and linearity of the
LIBS signal. Considering matrix effects, the intensities of transition lines varied with the
different physical properties and affinity with the laser wavelength of the different battery
materials. Therefore, highly sensitive transition lines, such as Li at 610.29 nm and Li at
670.81 nm, exhibited poor linearity from one material to another, as shown in Figure 4. It
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is important to note that as NMC compositions are similar to the content scale used, the
intensity provided was the mean value for all NMC compositions and samples. Looking
at relative standard deviations, values were typically higher for the 812.65 nm transition,
which is expected as standard deviations are divided by the mean intensity value. To
normalize transitions, the 610.29 or 670.81 nm transitions were thus a better choice than
the 812.65 nm transition. With regard to signal saturation, the 610.29 nm line was a better
choice than the 670.81 nm line for signal normalization because of its wider variation range,
making it less saturated than the 670.81 nm line. The 610.29 nm Li transition was thus used
as an attempt to normalize and correct the linearity of the secondary element calibration
curves for classification.

Figure 4. (A) Intensities and (B) relative standard deviations of Li lines at 610.29, 670.81, and
812.65 nm in LIBS spectra of different battery materials.

3.3. Specificity of Different Transition Lines

As a first step to understanding the data, it is important to choose emission lines
with the best specificity and study whether classification is possible using a quantitative
method. Different transitions based on qualitative observations, previous work, and the
NIST database [30] were chosen to study the specificity of the elements contained in the
analyzed materials. The selected transitions are put together in Table 5 and are shown for
visualization of the mean spectra of the different materials in Figure S1.
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Table 5. Selected transition lines of different battery materials.

Element Transition/nm

Li 610.29
Al 396.12
Ti 353.56
Co 412.06
Fe 249.30
Mn 423.48
La 433.26
Ni 385.85

First, by comparing all the typical spectra for each material, single transition lines for
seven elements were selected to investigate their specificity and linearity range. In Figure 5,
different boxplots for each element are plotted to compare their intensity in non-bearing
materials, according to the transition selected in Table 5. By looking at the chosen Ni, Mn,
and Co line boxplots, good specificity is observed when comparing non-bearing materials to
materials such as LCO, LMO, and NCA bearing higher contents of these targeted elements.
For NMC111, NMC532, and NMC622, where Ni, Mn, and Co contents were more evenly
distributed, the distribution of intensities was only a little wider than for non-bearing
materials and their medians were less discernable than for more concentrated materials.
The lines were chosen to the best of our knowledge regarding impurities and possible
contamination affecting the specificity from overlapping lines; however, these results show
that a method based on quantification and thresholding may not be enough to classify
the different NMC compositions. For example, non-bearing Ni LFP material classification
may become compromised if only based on Ni quantification because of the large amount
of Fe transition lines in the Ni line wavelength range. For process analysis, this type of
classification would be used to monitor NMC phase formation with precise ratios of Ni,
Mn, and Co. To detect subtle phase changes, it is crucial to investigate algorithms even
sturdier than a threshold method, due to the low specificity of the described lines. The Al
boxplot shows narrow distributions, especially for the NCA material. Some non-Al-bearing
materials showed higher Al contents. In this context, such a large distribution usually
comes from contamination. Although precautions were taken, Al is an element abundantly
used for parts in manufacturing processes. The lines for Fe, Ti, and La all showed the
best specificity with a very narrow distribution of intensities in non-bearing materials. Of
course, such observations are relative to the concentration of these elements in the materials.
Furthermore, more materials bearing Fe and La should be analyzed to further discuss the
specificity of the chosen lines. The LATP material showed wider distributions in Al and Ti
boxplots. No overlap of each element’s lines was expected at these wavelength ranges, so
some spectra acquisition either contained large particle size impurities or the laser was out
of focus for some steps, perhaps due to the quality of the pellet or the particle size.

3.4. Linearity of Ni, Mn, and Co Transition Lines

Studying the linearity range of the different Ni, Mn, and Co transition lines was crucial,
as saturation may result in a loss of accuracy during classification. In Figure 6, for example,
the relative intensities of the Mn, Co, and Ni transitions for each material were plotted as a
function of their expected contents. Curves with initial intensity values ((a), (b), and (c))
and values normalized over the Li transition line at 610.29 nm ((d), (e), and (f)) are provided
to show the impact of normalizing signals by a sensitive transition on the calibration curves.
Linearity was consequently better for normalized data. Although the Mn and Co lines
seemed to be in the linear range when looking at their expected contents, the lack of data
above 30 wt % and below about 60 wt % showed that no conclusions could be reached
about the linearity range of such materials. Even if other LCO (Co: 60.2 wt%) and LMO
(Mn: 60.8 wt%) samples were analyzed, other materials should be used to populate the
25 to 45 wt% range to reach conclusions on linearity and signal saturation. Furthermore,
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no conclusions could be reached for the Ni curve, shown in Figure 6B, as the distribution
around the trend was wide. Although conclusions on whether the lines could be used to
assess contents from typical calibration methods could not be made, the increased linearity
when normalizing over the 610.29 nm Li transition line was promising and was thus used
to normalize single transition lines in the next section.

Figure 5. Boxplot of the intensities of (A) Al, (B) Ti, (C) Co, (D) Fe, (E) Mn, (F) La, and (G) Ni emission
lines in different materials.
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Figure 6. Intensities of (A) Co, (B) Mn, and (C) Ni emission lines with background removal and
(D) Co, (E) Mn, and (F) Ni emission lines relative to Li at 610.29 nm as functions of their expected
contents in different battery materials.

3.5. Dimension Reduction at the Risk of Crucial Information Loss

The machine learning algorithms described earlier were first trained for classification
using only a single transition line from the signal of seven elements composing the different
materials analyzed. The train and validation set accuracy results at varying training set
sizes are shown in Table 6. All results, including the testing set accuracy and training
and testing times, are reported in Supplementary Material Tables S1–S4. Furthermore,
confusion matrices for one iteration of each algorithm using a 0.01 train set size are shown
in Figures S3–S6. Although the AM and SVM algorithms showed poor accuracy, results
were improved using higher capacity RF and DNN1 algorithms. Although the results were
improved, accuracies on the validation sets reached a maximum of about 97% when a large
number of spectra was used for training, starting at about a 50% train set size or using about
250 spectra per sample for classification. This represented poor classification of NMC532,
NMC622, and other similar classes, as observed in the confusion matrices. Overall, low-
capacity AM showed poor accuracy results on unweighted results. Although AM was
typically faster to compute, additional data pretreatment, such as individual scaling, should
be done to improve results. Pretreatments are likely to increase computation times and
require more user inputs or validation, which is not viable. The other tested algorithms
showed poor accuracy, especially for the accurate classification of NMC532 and NMC622.
Additionally, overfitting with the RF algorithm was clearly observed, as the accuracy
on the training set is typically higher than the accuracy on the test set. Many solutions
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could be attempted to solve the overfitting issues of the RF algorithm. For example, the
depth of the decision trees could be constrained or sturdier variational methods could be
investigated. These solutions are not optimal for building databases subject to additions,
because even if a constraining depth and other parameters are optimized for the current
dataset, the same optimization work will have to be conducted again for other additions,
which can be time-consuming and impractical as user inputs increase. One could choose to
select multiple transition lines per element to extract more information and improve the
classification task, but the same specificity and linear range validation task should also
be performed, increasing the number of user inputs and making this validation method
less robust. Therefore, we decided to try applying artificial intelligence algorithms on
the full spectra to see whether avoiding information loss could solve both accuracy and
overfitting issues.

Table 6. Mean and RSD of accuracy using selected lines as inputs and using different machine
learning algorithms over 10 iterations.

Algorithm

Train Set: 1%
Test Set: 99%

Train Set: 5%
Test Set: 95%

Train Set: 20%
Test Set: 80%

Train Set: 50%
Test Set: 50%

Train
Set

Validation
Set

Train
Set

Validation
Set

Train
Set

Validation
Set

Train
Set

Validation
Set

AM
Mean accuracy/% 9.09 9.09 9.16 9.09 9.09 9.09 9.09 9.09

RSD/% <0.01 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01

SVM
Mean accuracy/% 75.82 66.87 61.75 61.25 59.69 58.65 59.69 58.65

RSD/% 0.06 0.11 0.09 0.08 0.03 0.06 0.04 0.05

RF
Mean accuracy/% 100.00 87.77 100.00 94.57 100.00 96.26 100.00 96.81

RSD/% <0.01 0.02 <0.01 0.01 <0.01 <0.01 <0.01 <0.01

DNN1
Mean accuracy/% 97.09 94.96 96.07 95.46 96.38 95.81 96.16 96.03

RSD/% 0.02 <0.01 0.01 <0.01 0.01 <0.01 0.01 <0.01

3.6. Deep Neural Network Classification

This time, using the full spectra, the same algorithms were used to classify the different
battery materials. The results shown in Table 7 were computed on spectra normalized to
their norm. All results, including the testing set accuracy and training and testing times,
are reported in Supplementary Material Tables S5–S11. Furthermore, confusion matrices
for one iteration of each algorithm using a 0.01 train set size are shown in Figures S7–S13.
At the microscopic scale, pellets had a rough surface; thus, when normalized to their norm,
out-of-focus pixels introduced more noise to patterns at scales similar to in-focus samples.
Furthermore, a norm normalization described in Equation (1) was performed instead of
mean normalization because all the algorithms tested besides AM were parametric. This
meant the data needed to classify new spectra were only parameters; neither the training
files nor mean spectra were needed. This was a useful asset as the training time was not
affected by the number of spectra used for training and checkpoint files are typically smaller
than hyperspectral data saved for non-parametric algorithms.

In Table 7, AM and SVM again exhibit poor, yet improved, accuracy results. RF and
DNN1 were also improved by avoiding the loss of information using full spectra. Although
these results improved, overfitting was still observed using RF and DNN1, especially when
using fewer spectra for the training. In Figure 7, for example, accuracies and RSD for a
higher number of training set sizes are plotted for the different machine learning algorithms
(1, 2, 5, 10, 20, and 50%). Overfitting using AM and RF is clearly noticeable, whereas SVM
shows no such issue. DNN1 is trickier, overfitting at 1, 2, and 5%, but showing slightly
lesser accuracy, and less overfitting at 10%. Overfitting in LIBS spectra manifests itself
either by fitting to the background noise or fitting to trace elements, such as Na, K, or Ca, for
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which LIBS has high sensitivity and detects low ppm/high ppb. If trace element contents
were somewhat homogenous in a few materials, this signal could be interpreted by the
algorithm as being a feature important for classification. The goal of the overfitting study
was to mitigate the use of non-specific signals and favorably use the signal of composing
elements. An application of the phase specificity of the LIBS signal was to distinguish even
smaller stoichiometric changes, such as (de)lithiation upon cycling. For such an application,
fewer spectra were predicted to be available to train the different algorithms; thus, another
objective was to improve the accuracy of the test set for smaller train set sizes.

Table 7. Mean and RSD of accuracy using full spectra as inputs and different machine learning
algorithms over 10 iterations.

Algorithm

Train Set: 1%
Test Set: 99%

Train Set: 5%
Test Set: 95%

Train Set: 20%
Test Set: 80%

Train Set: 50%
Test Set: 50%

Train
Set

Validation
Set

Train
Set

Validation
Set

Train
Set

Validation
Set

Train
Set

Validation
Set

AM
Mean accuracy/% 85.64 82.38 86.62 84.88 85.41 84.68 84.91 84.88

RSD/% 0.03 0.02 0.01 0.01 0.01 0.01 0.01 <0.01

SVM
Mean accuracy/% 80.55 75.04 79.85 78.86 83.04 82.70 84.75 84.63

RSD/% 0.06 0.05 0.04 0.02 0.01 0.01 <0.01 <0.01

RF
Mean accuracy/% 100.00 78.97 100.00 94.27 100.00 97.99 100.00 99.14

RSD/% <0.01 0.04 <0.01 0.01 <0.01 0.01 <0.01 <0.01

DNN1
Mean accuracy/% 100.00 93.03 99.75 97.95 99.95 99.59 100.00 99.94

RSD/% <0.01 0.02 <0.01 0.01 <0.01 <0.01 <0.01 <0.01

DNN2
Mean accuracy/% 100.00 93.12 99.05 97.42 99.95 99.63 99.99 99.63

RSD/% <0.01 0.02 0.01 0.01 <0.01 <0.01 <0.01 <0.01

DNN3
Mean accuracy/% 97.09 90.49 98.95 97.41 99.90 99.50 100.00 99.92

RSD/% 0.07 0.06 0.01 0.01 <0.01 0.01 <0.01 <0.01

CNN1
Mean accuracy/% 82.55 77.68 99.31 98.18 100.00 99.94 100.00 99.99

RSD/% 0.44 0.44 0.01 0.01 <0.01 <0.01 <0.01 <0.01

One approach to take better advantage of the complete set of inputs was to use
deep learning architectures with enough capacity. The definition of deep learning is
similar to neural networks, but layers are juxtaposed into so-called hidden layers. Unique
architectures can be created, including CNN, with the goal to increase the number of
extracted features and have better control over the bias–variance trade-off. Two simple
deep learning architectures were tested, first using two (DNN2), then three (DNN3) hidden
layers. Better accuracy and less overfitting were obtained using DNN3 at a 10% training
set size, shown in Figure 7, demonstrating the potential of feature extraction on variance
reduction and overfitting for accurate classification. Finally, a CNN architecture based
on convolution and pooling parameters reported by Zhao et al. [29] (CNN1) exhibited
promising results.
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Figure 7. Accuracy and RSD as functions of the training set size for different machine learning
classification algorithms over 10 iterations, using full spectra.

An accuracy of 99.18% at 5% was the highest score using any algorithm. Furthermore,
although accuracy scores at 1 and 2% were lower than using DNN2 and DNN3, much less
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overfitting was observed, and the uncertainty on the classification of the test set was more
coherent with the steady accuracy increase with the increase in training set size. Another
promising result was the improved overfitting on smaller training sets using the CNN1
algorithm. The accuracy on both training and testing sets at 1% was of interest for this
methodology. Out of ten iterations, the CNN1 algorithm should have been trained longer
and/or with a smaller learning rate for one or a few of the iterations, but in general, showed
good accuracies, as shown in the confusion matrix in Figure S13. The uncertainty of the
results was interesting to add to a methodology to automatically optimize deep learning
algorithm parameters when executed by an inexperienced user. Although the learning rate
and patience parameters were enough to obtain good results for bigger training sets, the
uncertainty at 1% foreshadows that training parameters may result in some errors, even
though CNN1 had promising results overall.

3.7. Training and Testing Times

More consideration is needed for the different training and testing times using different
data pretreatment and algorithms. Data is available in supporting information, along with
mean time values and RSD, using full normalized spectra as inputs. Training times for deep
learning algorithms (DNN1, DNN2, DNN3, and CNN1) were not optimized for the task:
the number of epochs, patience, and learning rates can be tuned to lower computation times.
As the algorithms were tested for multiple iterations, the number of epochs was set at 500
to ensure training reached a minimal loss at each iteration. Therefore, the reader should
consider training time tendencies as the number of training data increases and testing times.
In Figure S14, deep learning algorithm training times are less affected by the training set
size than AM, SVM, and RF, which shows that for large datasets, and thus hyperspectral
data, deep learning parametric algorithms exhibit more fine-tuning potential. Furthermore,
testing times of deep learning algorithms were the same order of magnitude as RF and
SVM algorithms, even for the CNN1, which could have been expected to be more time-
consuming due to the convolution step. Deep learning algorithms, although taking longer
to train using unoptimized parameters, showed good composition classification capabilities
at testing times similar to the RF algorithm, exhibiting competitive accuracy results. In
settings such as quality control or synthesis composition validation, the algorithms would
already be trained, so that the training times affect real-time analysis less than testing times.

Overall, considering the training and testing times and accuracy results, deep learning
algorithms showed a better capability in adapting to the needs of the task. Depending on
the amount of training data available, its variance, and computational needs, the chosen
algorithm can be engineered to offer an inexperienced user in-depth solutions to the
task to be performed. The methodology presented in this paper is thus pioneering the
uniformization of different algorithm performances, which can be applied to different tasks
and run by users from different backgrounds. Although training parameters can be tuned
for the task, the ultimate automated system should be able to independently assess whether
the training is being performed with optimal parameters; however, there are no studies or
methodologies currently in the literature to tackle chemical analytics.

4. Conclusions

To conclude, the specific measurement of different NMC cathode material composi-
tions and other Li-ion battery materials was studied, along with a validation method first
investigating transition line specificity and linear range, and then using different artificial
intelligence algorithms for classification. Overall, a CNN deep learning algorithm allowed
for improved control on overfitting and better accuracy results using fewer spectra for
training. Depending on the training sets and computing apparatus available, one could
choose a simpler deep learning architecture to lower training computation times. The use
of artificial intelligence on digitalized data is versatile and can be used to improve the
identification of components and even compositions, depending on the target applications.
Real-time applications using deep learning algorithms would be possible, as testing times
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took about 1.5 s for 11 000 spectra, or 0.2 ms per spectrum, which is the same order of
magnitude as CORIOSITY LIBS acquisition rates. Considering the fast computational de-
velopment and parallel computing, deep learning methods appear to be a realistic solution
for improving the accuracy of different classification or regression tasks and will allow
better methodologies in the future for inexperienced users to execute a training task, such
as in quality control laboratory settings.

Li-ion battery manufacturing and recycling processes can thus be improved and made
safer by robotizing (dis)assembly, which relies greatly on real-time digitalization. Elemental
compositions vary from different manufacturers and products, and manufacturing a chemi-
cal sensor capable of accurately identifying compositions fast, with high accuracy and good
sensitivity to lithium contents, would increase the efficiency of recycling processes.

This study demonstrates the capability of a high-throughput LIBS instrument to
accurately classify different Li-ion battery components from different manufacturers at
record speeds of 0.77 ms/pixel. As opposed to other techniques used in the , such as
XRD and XPS, LIBS has a higher throughput, requires no sample preparation, and has no
special conditions, such as vacuum or vector gases. Furthermore, the sensitivity to and
direct analysis of Li contents is exemplary and allows the study of new metrics, such as
elemental distributions. Although this performance is innovative and may solve several
quality control issues, the reader should keep in mind that LIBS is an ablation method; thus,
applications are limited to post-cycling studies. LIBS shows much better practicability than
induced-coupled plasma methods used for recycling and manufacturing, and its spatial
information allows for better sampling logistics, as a LIBS sensor could be placed on a
conveyor belt or anywhere on the process line to assess real-time contents and compositions.
Future work to investigate trace element contents and distributions and classify smaller
stoichiometric changes, such as the (de)lithiation of the same composition of the same
material, would provide further insight for battery materials manufacturers and academic
researchers on using the LIBS signal to characterize synthetic materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/batteries8110231/s1, Figure S1: LIBS mean spectra of certain the
battery materials and chosen transition lines analyzed using the described method between 215 and
940 nm. Table S1: Mean and RSD of training, testing and validation sets accuracies, and training
and testing times using selected lines as inputs and using the AM algorithm over 10 iterations.;
Table S2: Mean and RSD of training, testing and validation sets accuracies, and training and testing
times using selected lines as inputs and using the SVM algorithm over 10 iterations.; Table S3: Mean
and RSD of training, testing and validation sets accuracies, and training and testing times using
selected lines as inputs and using the RF algorithm over 10 iterations.; Table S4: Mean and RSD
of training, testing and validation sets accuracies, and training and testing times using selected
lines as inputs and using the DNN1 algorithm over 10 iterations.; Figure S2: Accuracy and RSD
as functions of the size of the training set for different machine learning classification algorithms
over 10 iterations using selected transition lines.; Figure S3: Confusion matrix using selected lines
as inputs and using the AM algorithm with a 0.01 train set size.; Figure S4: Confusion matrix using
selected lines as inputs and using the SVM algorithm with a 0.01 train set size.; Figure S5. Confusion
matrix using selected lines as inputs and using the RF algorithm with a 0.01 train set size.; Figure S6:
Confusion matrix using selected lines as inputs and using the DNN1 algorithm with a 0.01 train set
size.; Table S5: Mean and RSD of training, testing and validation sets accuracies, and training and
testing times using full spectra as inputs and using the AM algorithm over 10 iterations.; Table S6:
Mean and RSD of training, testing and validation sets accuracies, and training and testing times
using full spectra as inputs and using the SVM algorithm over 10 iterations.; Table S7: Mean and
RSD of training, testing and validation sets accuracies, and training and testing times using full
spectra as inputs and using the RF algorithm over 10 iterations.; Table S8: Mean and RSD of training,
testing and validation sets accuracies, and training and testing times using full spectra as inputs
and using the DNN1 algorithm over 10 iterations.; Table S9: Mean and RSD of training, testing and
validation sets accuracies, and training and testing times using full spectra as inputs and using the
DNN2 algorithm over 10 iterations.; Table S10: Mean and RSD of training, testing and validation sets
accuracies, and training and testing times using full spectra as inputs and using the DNN3 algorithm

https://www.mdpi.com/article/10.3390/batteries8110231/s1
https://www.mdpi.com/article/10.3390/batteries8110231/s1


Batteries 2022, 8, 231 18 of 19

over 10 iterations.; Table S11: Mean and RSD of training, testing and validation sets accuracies,
and training and testing times using full spectra as inputs and using the CNN1 algorithm over
10 iterations.; Figure S7: Confusion matrix using full spectra as inputs and using the AM algorithm
with a 0.01 train set size.; Figure S8: Confusion matrix using full spectra as inputs and using the SVM
algorithm with a 0.01 train set size.; Figure S9: Confusion matrix using full spectra as inputs and
using the RF algorithm with a 0.01 train set size.; Figure S10: Confusion matrix using full spectra
as inputs and using the DNN1 algorithm with a 0.01 train set size.; Figure S11: Confusion matrix
using full spectra as inputs and using the DNN2 algorithm with a 0.01 train set size.; Figure S12:
Confusion matrix using full spectra as inputs and using the DNN3 algorithm with a 0.01 train set
size.; Figure S13: Confusion matrix using full spectra as inputs and using the CNN1 algorithm
with a 0.01 train set size.; Figure S14: Training and testing times and RSD as functions of the size
of the training set for different machine learning classification algorithms over 10 iterations using
full spectra.
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