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Abstract: Accurate characteristic prediction under constant power conditions can accurately evaluate
the capacity of lithium-ion battery output. It can also ensure safe use for new-energy vehicles and
electrochemical energy storage. As the battery voltage continues to drop under constant power
conditions, the battery current output will accordingly increase, which brings a risk of thermal
runaway in instances of weak heat dissipation. Therefore, knowing how to control the battery
temperature is very critical for safe use. At present, the model-based method for characteristic
prediction and temperature control has been used by most scholars, and that is also the key to this
method. This work firstly extends a cell model to a pack-based electrochemical two-dimensional
thermal coupling model, considering the heterogeneity of different cells inside the pack, and obtains
the model parameters for a prismatic lithium-ion battery with a rated capacity of 42 Ah. Characteristic
prediction under constant power conditions is then conducted based on an iterative solution method.
Validations of characteristic prediction indicate the convenience of the developed models, with
average absolute errors of voltage and temperature less than 36 mV and 0.4 K, respectively, and power
error less than 0.005%. Finally, two model-based temperature feed-forward control strategies with
lower cooling costs and shorter prediction times were developed based on the battery characteristic
predictions, which leaves room for further controller development.

Keywords: Lithium-ion batteries; battery characteristic prediction; simplified electrochemical
two-dimensional thermal coupling model; temperature-control strategy

1. Introduction

With the increasingly serious problems of environmental pollution and energy short-
ages, lithium-ion batteries, as one of the clean new energy sources, have been widely used
in many industrial fields such as new-energy vehicles, energy storage, etc. It is necessary to
predict battery characteristics under constant power conditions for their safe use, due to
the potential of overheating.

Currently, the methods for battery power estimation mainly include model-based
methods and machine-learning-based methods. Liu et al. [1] used a fractional equivalent
circle model (ECM) to estimate the state of power (SOP) and used small-order calculus
with state of charge (SOC), battery voltage, and current as constraints. It could be seen
from the experiment that the maximum relative error of SOP estimation results was 1.34%.
Feng et al. [2] used a novel ECM which added moving average noise to a resistor–capacitor
circuit model to accurately capture battery dynamics. A recursive extended least squares
algorithm was used to identify the ECM parameters online and showed high accuracy in
the experiment. Waag et al. [3] proposed a nonlinear model-based method for predicting
the available power in li-ion battery packs using the current dependence of the battery’s
resistance. Accurate power prediction was possible at room lower temperatures and
where the current dependence was larger. Pan et al. [4] proposed a multi-constraint
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power capacity forecasting method, which could overcome the shortcomings of three
single constraints, including voltage, current, and SOC, and an extended Kalman filter
algorithm was subsequently used for power state prediction. Most of the model-based
methods are predicted by the ECM of the power battery, and the prediction effects of
these methods depend on the model used. Guo et al. [5] experimentally studied the
polarization characteristics of the battery in a series of decreasing pulse tests; constructed a
feedforward neural network with inputs of SOC, discharge rate, and pulse running time,
and characterized the polarization voltage by modeling the polarization resistance excited
by the current; and then proposed a data-model fusion method to make accurate online
SOP estimation in a prediction window of 30 s to 120 s. This machine-learning-based
method had high accuracy but required a large amount of data to train the algorithm.

As the battery voltage gradually decreases with the descending of the SOC and the
voltage drops sharply at the end of discharge, the battery current will gradually increase to
meet the constant power output requirement. Due to the tight arrangement of the battery
pack, there is a risk of thermal runaway under poor heat dissipation conditions. It is thus
necessary to predict the power characteristics of the battery in advance and control the
temperature of the battery pack. Current methods for heat dissipation mainly include air
cooling [6], liquid cooling [7], phase-change material heat dissipation [8], heat pipe heat
dissipation [9], and so on.

As there exists an unpredictable and uncertain time delay before a temperature-
control system functions, a reasonable temperature-control strategy is thus essential to
realizing rapid regulation of battery temperature. General battery system temperature-
control strategies include: PID-based control, fuzzy-algorithm-based control, model-based
predictive control, and coupling control in several ways. Cen et al. [10] used a PID algorithm
to design an air-conditioning system for an electric vehicle to accomplish air circulation
in the vehicle and the battery pack. Extensive experimental studies indicated that the
optimized values could keep the maximum temperature difference below 2 ◦C at discharge
rates of 0.5 C and 1 C. The control strategy was easy to implement, but its response speed
was slow. Afzal et al. [11] developed a new technique for the multi-objective optimization of
battery system thermal management using a hybrid genetic algorithm. Jiaqiang E. et al. [12]
used the fuzzy grey relational theory and the orthogonal experimental design method to
discuss the influence of the optimal forced air-cooling model parameters on the temperature-
control ability of the battery module. Fuzzy-based control had strong robustness; however
the required expert experience is difficult to obtain and the fuzzification of the collected
information would probably lead to a decrease in accuracy. Zhu et al. [13] proposed a
model-based predictive control strategy based on finite sets that could simultaneously
minimize the energy consumption of cooling or heating. Model-based predictive control
is suitable for the control of nonlinear and hysteretic systems, and has the capabilities
of advanced prediction, time-varying online iterative optimization, and accurate output
feedback correction, and its applicability is related to the accuracy of the battery model.

Currently, the commonly used models include ECM and the electrochemical model.
Electrochemical models are favored by many scholars because of their high accuracy in
battery state estimation at various conditions [14–16]. J. Newman et al. first established a
pseudo-two-dimensional (P2D) model [17]. Its accuracy and versatility are good, but the
calculation process is complicated and difficult to implement. Some scholars have added
descriptions of temperature distribution onto the P2D model and others have proposed
thermal coupling models [18,19]. The developed model could be used to optimize the
design of thermal management systems and perform aging analysis [20–24]. It could also be
used to analyze the battery’s internal heat generation and simulate the surface temperature
change of different materials [25–28]. Romero-Becerril et al. [29] developed a single-particle
(SP) model, which used the behavior of a single active particle to substitute for the chemical
reaction behavior of the entire electrode. On the basis of the SP model, Luo Weilin et al. [30]
proposed an improved SP model, which comprehensively balanced the accuracy and
operation time. How to ensure simulation accuracy at a full-charge state operating range
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and realize rapid calculation becomes the key point in terms of characteristic prediction
and temperature control.

This paper’s contribution is as follows: (1) an electrochemical-two-dimensional ther-
mal coupling model is developed for a typical battery pack configuration, considering
the differences among single cells, (2) a model-driven battery characteristic prediction
algorithm is proposed to predict the voltage, current, and temperature of the battery pack
under constant power conditions, and (3) two effective temperature-control strategies
are proposed to keep the temperature within a certain range. The rest of this work is as
follows: Section 2 introduces the battery pack modeling method and characteristic predic-
tion method under constant power conditions for a battery pack; Section 3 introduces the
experiments and verifies the accuracy of the prediction algorithm; Section 4 introduces the
model-based thermal control strategy, followed by conclusions in Section 5.

2. Battery Model and Characteristic Prediction Method
2.1. Modeling for a Single Cell

The active positive and negative electrode materials of a lithium-ion battery are re-
garded as composed of spherical active particles. During the use of the battery, there are
several physical and chemical processes: solid-phase diffusion, electrochemical reactions
on particle surfaces, liquid-phase diffusion and internal heat generation, heat transfer from
the interior of the battery to the outer shell, and heat dissipation on the battery surface.
To simplify the calculation of the electrochemical characteristics of the battery, this work
assumes that the reaction distribution at each position inside the battery is uniform. Based
on Fick’s second law, the change law of solid-phase lithium-ion concentration in the direc-
tion of the radius of active battery material is established; the concentration polarization
is described by parameters of Pconi, i = n,p and parameters of τe that reflect the degree of
polarization and the time length of the establishment of the concentration difference, which
participate in the calculation of the polarization overpotential represented by ηcon; the
difficulty of the electrochemical reaction inside the battery is described by parameters of the
Pact polarization coefficient and it participates in the calculation of the reaction polarization
overpotential, represented by ηact; the ohmic polarization overpotential, represented by
ηohm, follows Ohm’s law, and then the battery terminal voltage Uapp can be calculated from
ηcon, ηact, ηohm, and the open circuit voltage, which is represented by Eocv.

To quickly predict the change of battery temperature characteristics, this work assumes
that the temperature distribution inside the battery is uniform. The heat-generation rate
equation can be obtained based on the Bernardi heat generation model. In this paper,
the thermal resistance model is used to describe the heat exchange process between the
electrode winding body and the battery shell, as well as the battery shell and the external
environment. Due to the thermal anisotropy of the prismatic battery, the temperature
gradient distribution exists in two directions: x and y, which are shown in Figure 1.
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Figure 1. Structure diagram of the two-dimensional thermal resistance model [29]. Figure 1. Structure diagram of the two-dimensional thermal resistance model [29].

Change in the internal temperature affects the electrochemical reaction processes, and
it will affect the model parameters for electrochemical behaviors. It is well-known that
the influence of the thermal change on the parameters can be described by the Arrhenius
equation. Open-circuit voltage Eocv and other overpotentials ηact and ηcon are dependent
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on temperature. The Nernst equation correction equation for Eocv is shown in Equation (1),
where Tref is the reference temperature and is the open-circuit potential in electrochemistry:

Eocv= Eref
ocv+(T − T ref )

dEocv

dT
(1)

Detailed descriptions of simplified electrochemical-thermal coupling models have
been introduced in our previous work [29]. The main numerical equations of the model are
shown in Table 1.

Table 1. Numerical equations of the model.

Correlation Mechanism Equations

Terminal voltage Uapp(k) = Eocv(k) − ηcon(k) − ηact(k) − ηohm(k)
Open circuit potential correction Eocv(k) = Eref

ocv(k) + (T(k) − T ref

)
dEocv
dT

Basic working principle

xavg(k) = x0 −
∫ tk

t1
Idt/Qn, xsurf (k) = xavg(k) − ∆x(k), ∆x(k) =∆x1(k)+ 2

7 τnI(k)/Qn,

yavg(k) = y0 +
∫ tk

t1
Idt/Qp, ysurf (k) = yavg(k)+∆y(k), ∆y(k) =∆y1(k)+ 2

7 τpI(k)/Qp,

Eocv(k) = Up

[
ysurf (k)

]
− Un

[
xsurf (k)

]
Solid diffusion ∆x1(k + 1) =∆x1(k)+ 1

τn

[
12τnI(k)

7Qn
− ∆x1(k)]∆t, ∆y1(k + 1) =∆y1(k)+ 1

τp

[
12τpI(k)

7Qp
− ∆y1(k)]∆t

Liquid phase diffusion
∆cn(k + 1) =∆cn(k)+ 1

τe
[PconnI(k) − ∆cn(k)]∆t, ∆cp(k + 1) =∆cp(k)+ 1

τe

[
Pconp− ∆cp(k)

]
∆t,

ηcon(k) =
2RT(k)

F (1 − t+) ln
[

c0+∆cp(k)
c0 − ∆cn(k)

]
Reactive polarization

ηact(k) =
2RT(k)

F [ln(
√

m2
n(k) + 1+mn(k)) − ln(

√
m2

p(k) + 1+mp(k))]

mp(k) = 1
6Qpc0.5

0

1
(1 − y surf (k))

0.5(y surf (k))
0.5 PactI(k), mn = 1

6Qnc0.5
0

1
(1− x surf (k))

0.5(x surf (k))
0.5 PactI(k)

Ohmic polarization ηohm= RohmI (k)
Heat production

.
Q(k)= −I(k)T(k) dEocv

dT +I(k)(E ocv(k) − Uapp(k))
Internal temperature Tk+1= Tk + ∆t

mrollCp

( .
Q(k) −

(
1

Rcondx
+ 8Vλx

l2x

)
(T k − Tk

surfx) − ( 1
Rcondy

+
8Vλy

l2y
)(T k − Tk

surfy))

Shell temperature
Tk+1

surfx= Tk
surfx + ∆t

mcanCcan

(
1

Rcondx
(T k+1− Tk

surfx) −
Vhx
ly

(T k
surfx − Ta))

Tk+1
surfy= Tk

surfy +
∆t

mcanCcan

(
1

Rcondy
(T k+1 − Tk

surfy) −
Vhx
ly

(T k
surfy − Ta))

2.2. Parameter Identification

To realize the model simulation, the model parameters needed to be obtained in
advance. Except for inherent characteristic parameters such as weight and length, model
parameters which appear in Table 1 needed to be obtained individually via the identification
method.

There was an obvious time difference among the electrochemical processes of the bat-
tery, and the response degrees of different processes caused by the same current excitation
were also different, so the decoupling of each part could be completed [30]. The current
used for identification is shown in Figure 2.
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The thermal parameters that needed to be determined mainly included Cp, λx, λy,
Rcondx, and Rcondy. Cp, λx, and λy can be calculated according to the ratio of different com-
ponents of the battery. The equivalent specific heat capacity Cp,battery can be calculated
by Equation (2), where mi and cp,i are the mass and specific heat capacity of the corre-
sponding component material. The calculation of λx and λy was performed as shown
in Equation (3), where La andi are the thickness of the component material in the corre-
sponding axial direction, and λa and iare the thermal conductivity of the corresponding
component material.

Cp,battery =
∑n

i=1 Cp,imi

∑n
i=1 mi

(2)

λa =
∑n

i=1 La,i

∑n
i=1(L a,i/λa,i

) , a = x, y (3)

Rcondx and Rcondy were used to characterize the heat transferred from the inside to
the outside in two directions, respectively. They can be obtained iteratively through
Equation (4). The initial values of Rcondx and Rcondy are 0.01.

Rcondx =
Tk+1−Tk

surfx(
Tk+1

surfx−Tk
surfx

)
mcanCcan

∆t + Vhx
ly (T k

surfx−Ta

) , Rcondy =
Tk+1−Tk

surfy(
Tk+1

surfy−Tk
surfy

)
mcanCcan

∆t +
Vhy

lx (T k
surfy−Ta

) (4)

2.3. Modeling a Battery Pack

Taking a three-series battery-pack structure as the modeling object, the electrical
connection and the thermal connection of each single lithium-ion battery in the battery
pack were studied. The series of functional modules is shown in Figure 3.
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The electrochemical reactions of the cells are independent of each other; the external
characteristic behaviors of the battery pack can be regarded as the linear superposition of
the cells connected in series, as shown in Equation (5), where Uapp, i, and i = total, 1,2,3 are the
total voltage of the battery pack and each cell, and Ii and i = total, 1,2,3 are the total current
and the current of each cell. The behaviors of the external characteristics of the cell were
determined by the model parameters, and the corresponding model parameter sets of
different cells are also different. The parameter acquisition of each cell was the same as
described above.

Uapp,total= Uapp,1+Uapp,2+Uapp,3, Itotal= I1= I2= I3 (5)

The multi-physics model of the battery pack uses a thermal resistance network method
to establish the thermal connection between the cells, assuming that the temperature fields
inside the cells are independent of each other and the thermal connection between the cells
is established through the thermal gap between the cells. The thermal resistance network
diagram of the battery pack is shown in Figure 4. In the process of battery grouping, the
batteries are assembled by bonding their larger surfaces with the purpose of improving
space utilization. Gap in Figure 4 is the air interstice inside the battery pack.
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The symmetrical end faces have the same heat transfer coefficient for a single cell.
For a pack as in Figure 4, the heat transfer coefficients h of the inner and outer faces for
cell 1 and cell 3 are different, while the h of the two inner faces for cell 2 remains identical.
Calculation of the internal temperatures of cell 1 and cell 2 is shown in Equation (6), where(
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)
/2 represents the ambient temperature of the gap.
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(6)

Obviously, cell 1 and cell 3, as the two outermost cells of the battery pack, have different
heat transfer coefficients on the outer and inner end faces. The heat transfer coefficient of
the inner end gap decreases with the thinness of the gap space, and hd represents the heat
transfer coefficient of the gap. Since the internal temperature fields of the cells are assumed
to be independent of each other, the establishment of the thermal connection is based
on the heat exchange between the shell temperature and the gap of each cell. Therefore,
the difference in the group arrangement position of the different cells can be indirectly
characterized by the difference in the heat transfer coefficient.

The assumptions of the thermal model are shown in Table 2.

Table 2. Assumptions of the thermal model.

Assumptions Explanations

The temperature conduction in z direction which is shown in
Figure 1 is ignored.

The laminated structure inside the battery only exists in the x
and y directions, but not in the z direction. The temperature

difference in the z direction is ignored.

The temperature distribution inside the battery is uniform.

In order to reduce the complexity of battery modeling and
simulation time, this work ignores the temperature difference at

different positions inside the battery, referring to a
lumped-parameter thermal model.

The resistance of wires in the battery pack is ignored. Compared with the internal resistance of the battery, the wire
resistance is too small and is ignored.

2.4. Characteristic Prediction under Constant Power Conditions

Equation (7) can be used to calculate the power of the battery pack, where Ptotal is the
power of the battery pack:

Ptotal= UtotalItotal (7)

A current iterative solution method was used to simulate battery characteristic per-
formance when a cell is discharging at constant power. The processes of the prediction
algorithm are shown in Figure 5.

As shown in Figure 5, the parameters were first initialized, including constant power,
initial voltage, current variations, and allowable error value of power output; secondly, ini-
tial approximate current was determined by Equation (8), where I is the initial approximate
current, P is the set constant power value, and Utotal,0 is the initial terminal voltage; thirdly,
the battery power and current were calculated repeatedly until the error was within the
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allowable range; finally, if the voltage of any cell exceeded the upper and lower cut-off
voltage, the above processes ended.

I = P/Utotal,0 (8)
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3. Experiment

In this paper, MATLAB and Python were used for calculation and simulation. The data
collection of terminal voltage, current, and temperature was achieved using equipment
from Neware Co. Ltd., and the environmental temperature was controlled by a thermal
chamber provided by Dongguan Bell Experiment Equipment Co., Ltd. During the testing
processes, the above data were acquired synchronously. Note that the measurement errors
of the equipment were 0.1 mV, 0.1 mA, and 0.1 K, respectively. A prismatic battery with a
rated capacity of 42 Ah was selected as the research object. The specifications of this battery
are shown in Figure 6 and Table 3. Table 4 and Figure 7 show the battery parameters. As
shown in Figure 7, there is a gap between the two directions of Rcond, which is determined
by the different properties of the two directions of the battery.
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Table 3. Battery specification.

Specification Parameter Specification Parameter

Height 10 ± 2 mm Weight about 0.721 kg
Width 25 ± 2 mm Positive electrode material NCM
Length 150 ± 2 mm Negative electrode material Graphite

Table 4. Battery parameters.

Parameters Cell 1 Cell 2 Cell 3

y0, x0 0.4023, 0.7144 0.4073, 0.7549 0.403, 0.7196
Qp, Qnl 348200, 222740 320500, 212700 335900, 221000
τp, τn 10, 10 40,40 10,10
Pact 453910 334060 361500

Pconp, Pconn 219.1852, 115.7789 721.0612, 20.4525 219.7746115.3661
Rohm 0.0007 0.00015229 0.0007

τe 50 410.6422 100
hx, hy, hd 5, 30, 2 5, 30, 2 5, 30, 2

Cp 1160.17 1160.17 1160.17
λx, λy 2.35, 0.1526 2.35, 0.1526 2.35, 0.1526
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Figure 7. Curves of parameters Rcondx and Rcondy.

To verify simulation accuracy, a 20 A constant-current discharge experiment was
conducted at a constant temperature of 293.15 K, and the connection mode and temperature
acquisition points are shown in Figure 8.
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Figure 8. Battery pack and temperature acquisition point arrangement.

The comparison of terminal voltage and temperature is shown in Figure 9. The mean
absolute errors are shown in Table 5.
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Table 5. Mean absolute errors of temperature.

State Estimator Mean Errors State Estimator Mean Errors

Total terminal voltage
(V) 0.036 Point 4 temperature (K) 0.141

Point 1 temperature (K) 0.361 Point 5 temperature (K) 0.167
Point 2 temperature (K) 0.164 Point 6 temperature (K) 0.069
Point 3 temperature (K) 0.222 Point 7 temperature (K) 0.276

It can be concluded from Figure 9 that the temperature rise fluctuated noticeably in
the middle period of discharge (about 3000 s–6000 s), and errors between the simulation
and experiment are larger. During the whole discharge process, the temperature curves
of cell 1 and cell 3 were slightly different, and cell 2 is obviously different from the others,
which is because cell 1 and cell 3 were fresh batteries, and cell 2 was an aged battery used
for many tests. Because these batteries had different historical usage times, different health
conditions, and different capacities, for the same charging and discharging conditions the
heat production of the battery was naturally different. In addition, due to their arrangement
positions, the heat dissipation condition of cell 2 was not as good as the others—the
temperature rise was larger. In the x direction, which is shown in Figure 4, cell 1 and cell
3 were symmetrically distributed in the arrangement structure, and the temperature rise
was nearly the same. The temperature difference between shells at the middle and the
end of the discharge (after 3000 s) is in contact with the gap which is shown in Figure 4.
The results of comparing the accuracy of this model with other simulations are shown in
Table 6. It can be seen from Table 6 that the accuracy of the model simulations has been
further developed.

Table 6. Comparison results with other authors regarding temperature-simulation accuracy.

Others This Work
Type

Reference Type of
Battery Pack

Working
Condition

Ambient
Temperature Values Working

Condition Values

[31] 7S4P

0.17 C (6.03 A)
discharge 25 ◦C 0.99

0.5 C (20 A)
discharge 0.9938

Maximum
accuracy

(Accuracy is
1-mean
relative
errors)

0.4 C (14.444 A)
charge 25 ◦C 0.98

0.3 C (10.18 A)
discharge 25 ◦C 0.96

0.4 C (14.444 A)
charge 25 ◦C 0.97

0.4 C (14.44 A)
discharge 25 ◦C 0.96

0.4 C (14.44 A)
charge 25 ◦C 0.95

[23] 5S1P 0.9 C discharge 23.3 ◦C 0.95

[32] 5S1P WLTP class 3 drive
cycle

5 ◦C 6.7%
0.5 C (20 A)
discharge

1.35%
Maximum

relative
errors

25 ◦C 1.5%

45 ◦C 1.5%

[33] 1S1P 40 C (44 A) discharge 25 ◦C 6.22%

0.5 C (20 A)
discharge

[34] 1S1P

1 C (2.2 A) discharge

About
12.5 ◦C 3.5%

2 C (4.4 A) discharge

3 C (6.6 A) discharge

0.9 C discharge 23.3 ◦C
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Results of the comparison of measurements and predictions under constant power
conditions of 120 W and 135 W are shown in Figure 10. Due to the intrinsic error of
the experimental equipment, the power of the experimental equipment is greater than
the expected value. The comparison of voltage and current at constant power discharge
between the prediction and the experiment is shown in Figure 11. The predicted and
simulated discharge times are shown in Table 7.
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Table 7. Time of constant power discharge.

Power (W) Predicted Discharge Time (s) Experimental Discharge
Time (s)

135 12594 12621
120 14188 14168

As shown in Figure 11, when discharging at constant power, the voltage decreased,
and then the current needed to increase to keep the power constant. Therefore, there was a
short-term output of considerable current for the discharge terminal under constant power
conditions. It can be concluded from Figure 11 that the current should increase by about
7 A. In addition, when the required power increased, the voltage decreased faster and the
current increased faster compared to lower power conditions. With the increasing current,
the temperature increased. The maximum temperature changes under several constant
power conditions can be found in Figure 12 and specific maximum temperature rise values
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are shown in Table 8. It can be seen that the temperature rose rapidly at the end of discharge
and the maximum temperature rise values increased with the increase in power. So, in
order to ensure the safety of the batteries and prevent the temperature from getting out of
control, the temperature rise needs to be controlled within a certain threshold.
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Table 8. Specific temperature-rise values.

Constant Power (W) Temperature Rise
(K) Constant Power (W) Temperature Rise

(K)

120 2.96 165 4.10
135 3.33 180 4.50
150 3.72 195 4.90

4. Temperature-Control Strategies

The basic idea of a cooling method is to change the surface h and further reduce the
battery temperature. Without discussing the specific cooling methods, this work developed
a temperature-control strategy to keep battery temperature within a certain threshold on the
basis of model prediction. According to the specific scale of the battery pack, the maximum
h was considered to be 100 (W m−2 K−1) with reference to the air-cooling mode. Based on
the above model, with the purpose of reducing the cooling cost or shortening the predicted
consumption time, two temperature-control strategies were proposed to change the heat
transfer coefficient (h) by iterative solution according to the predicted temperature. Two
brief flow charts of these methods are shown in Figure 13, with the variable search noted
by dotted lines.

A larger required h means more work needs to be performed by the cooling system
and takes heat away from the battery, which will increase the cost. Thus, it is necessary
to properly adjust the cooling system to obtain a suitable h. As for the strategy of using a
constant search range for h, at each iterative calculation, h is searched in a constant large
search range to obtain the most suitable h. As shown in Figure 13a, battery temperature is
first predicted after a certain interval time of tp, which is defined as the period of model-
based temperature prediction. If the predicted temperature reaches the threshold, it is
necessary to adjust the temperature-control means at this time, such as increasing the
coolant flow rate for an air-cooled system or the wind speed for a liquid-cooled system. If
the obtained h exceeds the upper limit assumed in advance, it is assumed that the system
cannot meet the cooling requirements, and the batteries will be forced to stop discharging.
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To reduce the calculation cost of the developed strategy and increase the system’s
rapid-response capability, an optimal h is supposed to be selected at a variable search
range. As shown in Figure 13b, the initial lower limit h in each iteration process is replaced
by an h obtained in the previous process, which can reduce the search range, and the tp
of this strategy is thus smaller, which can reduce the time to obtain the maximum mean
temperature. The maximum temperature of the battery pack is the internal temperature
of cell 2, which can be seen for the simulation and the experiment in Figure 9. To sum up,
Strategy 1 can obtain a more suitable heat transfer coefficient and cost less, and Strategy 2
needs shorter calculational time and has a steadier heat transfer coefficient.

The control temperature threshold in this work was selected as 296.15 K. The maximum
temperature variation curves at different constant powers of 165 W, 180 W, and 195 W are
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shown in Figures 14a, 15a and 16a, and figures that can be used to prove that the battery
was discharged at constant power during temperature-control are shown in Figures 14b,
15b and 16b, as well as the simulation time for the two strategies shown in Table 9. It should
be noted that the simulation time shown in Table 9 is the consumption time of each iterative
computation for temperature control.

Batteries 2022, 8, x FOR PEER REVIEW 15 of 19 
 

To reduce the calculation cost of the developed strategy and increase the system’s 

rapid-response capability, an optimal h is supposed to be selected at a variable search 

range. As shown in Figure 13b, the initial lower limit h in each iteration process is replaced 

by an h obtained in the previous process, which can reduce the search range, and the tp of 

this strategy is thus smaller, which can reduce the time to obtain the maximum mean tem-

perature. The maximum temperature of the battery pack is the internal temperature of cell 

2, which can be seen for the simulation and the experiment in Figure 9. To sum up, Strat-

egy 1 can obtain a more suitable heat transfer coefficient and cost less, and Strategy 2 

needs shorter calculational time and has a steadier heat transfer coefficient. 

The control temperature threshold in this work was selected as 296.15 K. The maxi-

mum temperature variation curves at different constant powers of 165 W, 180 W, and 195 

W are shown in Figures 14a, 15a and 16a, and figures that can be used to prove that the 

battery was discharged at constant power during temperature-control are shown in Fig-

ures 14b, 15b and 16b, as well as the simulation time for the two strategies shown in Table 

9. It should be noted that the simulation time shown in Table 9 is the consumption time 

of each iterative computation for temperature control. 

  

(a) (b) 

Figure 14. 165 W constant-power condition. (a) Temperature contrast. (b) Power comparison. 

  
(a) (b) 

Figure 15. 180 W constant-power condition. (a) Temperature contrast. (b) Power comparison. 

Figure 14. 165 W constant-power condition. (a) Temperature contrast. (b) Power comparison.

Batteries 2022, 8, x FOR PEER REVIEW 15 of 19 
 

To reduce the calculation cost of the developed strategy and increase the system’s 

rapid-response capability, an optimal h is supposed to be selected at a variable search 

range. As shown in Figure 13b, the initial lower limit h in each iteration process is replaced 

by an h obtained in the previous process, which can reduce the search range, and the tp of 

this strategy is thus smaller, which can reduce the time to obtain the maximum mean tem-

perature. The maximum temperature of the battery pack is the internal temperature of cell 

2, which can be seen for the simulation and the experiment in Figure 9. To sum up, Strat-

egy 1 can obtain a more suitable heat transfer coefficient and cost less, and Strategy 2 

needs shorter calculational time and has a steadier heat transfer coefficient. 

The control temperature threshold in this work was selected as 296.15 K. The maxi-

mum temperature variation curves at different constant powers of 165 W, 180 W, and 195 

W are shown in Figures 14a, 15a and 16a, and figures that can be used to prove that the 

battery was discharged at constant power during temperature-control are shown in Fig-

ures 14b, 15b and 16b, as well as the simulation time for the two strategies shown in Table 

9. It should be noted that the simulation time shown in Table 9 is the consumption time 

of each iterative computation for temperature control. 

  

(a) (b) 

Figure 14. 165 W constant-power condition. (a) Temperature contrast. (b) Power comparison. 

  
(a) (b) 

Figure 15. 180 W constant-power condition. (a) Temperature contrast. (b) Power comparison. Figure 15. 180 W constant-power condition. (a) Temperature contrast. (b) Power comparison.

Batteries 2022, 8, x FOR PEER REVIEW 16 of 19 
 

  
(a) (b) 

Figure 16. 195 W constant-power condition. (a) Temperature contrast. (b) Power comparison. 

Table 9. Simulation time per cycle for two strategies. 

Power 165 W 180 W 195 W 

Simulation time for Strategy 1 (s) 0.505 0.597 0.718 

Simulation time for Strategy 2 (s) 0.327 0.382 0.399 

Taking the control strategy at constant 165 W power for example, variation results of 

the required h for temperature-control with the two control strategies are shown in Figure 

17. The battery temperature was controlled with an increasing h when it reached the 

threshold at about 4500 s, which could be seen from the variations in battery temperature 

in Figure 14a. Different control effectiveness can be observed with these two control strat-

egies: (1) the amplitude of h in Strategy 1 was smaller than that of Strategy 2, because 

Strategy 1 had a longer control period of tp; (2) when the battery temperature was effec-

tively controlled, the heat transfer coefficient of Strategy 1 decreased compared with an 

unchanged value in Strategy 2. In addition, when the temperature was controlled in a 

certain control period near the end of discharge in Strategy 1, the temperature of the bat-

tery soon reached the threshold again because of the obvious temperature rise. In order 

to achieve the temperature-control effect, Strategy 1 had to increase the heat transfer co-

efficient, thus resulting in a fluctuated h within a large range. 

  

Figure 17. h comparison under constant 165W power conditions. 

5. Conclusions 

In this work, the heterogeneity of a battery pack of three cells connected in series was 

characterized using an electrochemical-thermal coupling model. The simulation accuracy 

of terminal voltage and temperature was verified at discharge as a 20 A constant-current 

Figure 16. 195 W constant-power condition. (a) Temperature contrast. (b) Power comparison.



Batteries 2022, 8, 217 15 of 18

Table 9. Simulation time per cycle for two strategies.

Power 165 W 180 W 195 W

Simulation time for Strategy 1 (s) 0.505 0.597 0.718
Simulation time for Strategy 2 (s) 0.327 0.382 0.399

Taking the control strategy at constant 165 W power for example, variation results of
the required h for temperature-control with the two control strategies are shown in Figure 17.
The battery temperature was controlled with an increasing h when it reached the threshold
at about 4500 s, which could be seen from the variations in battery temperature in Figure 14a.
Different control effectiveness can be observed with these two control strategies: (1) the
amplitude of h in Strategy 1 was smaller than that of Strategy 2, because Strategy 1 had
a longer control period of tp; (2) when the battery temperature was effectively controlled,
the heat transfer coefficient of Strategy 1 decreased compared with an unchanged value in
Strategy 2. In addition, when the temperature was controlled in a certain control period near
the end of discharge in Strategy 1, the temperature of the battery soon reached the threshold
again because of the obvious temperature rise. In order to achieve the temperature-control
effect, Strategy 1 had to increase the heat transfer coefficient, thus resulting in a fluctuated
h within a large range.
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5. Conclusions

In this work, the heterogeneity of a battery pack of three cells connected in series was
characterized using an electrochemical-thermal coupling model. The simulation accuracy
of terminal voltage and temperature was verified at discharge as a 20 A constant-current
load. Validations showed that the average absolute errors of battery terminal voltage
and temperature were less than 36 mV and 0.4 K, respectively. Based on the model, an
iterative solution method was used to predict the characteristics under constant-power
conditions. Experimental verification showed that the power error was below 0.005%,
and the discharge time deviation was within 30 s. Two temperature-control strategies
were developed with the battery characteristic prediction method, and the effectiveness
of the two methods was proven by simulation. A temperature-control strategy based on
variable search range of heat transfer coefficient needs a shorter calculational time, while
a temperature-control strategy based on constant search range of heat transfer coefficient
costs less.

Author Contributions: Writing—original draft, J.L. and S.X.; methodology, J.L. and S.X.; Funding
acquisition, J.L. and Z.W.; supervision, C.D.; writing—review & editing, C.D.; software, M.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by [China Postdoctoral Science Foundation] grant number
[2021M690740]; this research was funded by [Gradient utilization and industrialization demonstration
of lithium-ion power battery] grant number [ZH01110405180053PWC].



Batteries 2022, 8, 217 16 of 18

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

∆x1 intermediate variable of ∆x(-)
∆y deviations between ysurf and yavg (-)
∆y1 intermediate variable of ∆y(-)
τi, i = n, p solid-phase diffusion time constant of electrodes (s)
τe liquid-phase diffusion time constant (s)
ηact reaction polarization overpotential (V)
ηcon concentration polarization overpotential (V)
ηohm ohmic polarization overpotential (V)
dEocv/dT entropy coefficient of the battery material (-)
V battery volume (m3)
lx battery length (m)
ly battery width respectively (m)
mroll mass of the electrode winding body (kg)
∆t time step (s)
hi, i = x,y x, y dimension heat exchange coefficient (W m−2K−1)
Rcondi, i = x, y internal thermal resistance of the battery in two directions (K W−1)
Ramb thermal resistance between the battery shell and the environment (K W−1)
Cp equivalent specific heat capacity of the battery (J kg−1K−1)
λi, i = x, y two-direction equivalent thermal conductivity of the battery (W m−1K−1)
Ta environment temperature (K)
Tsurfi, i = x, y shell temperature in two directions (K)
k discrete step number
I current (A)
c0 initial electrolyte concentration (mol m–3)
Eocv open-circuit voltage, OCV (V)
F Faraday constant (C mol–1)
Pact coefficient of anode reaction polarization (m–1.5 mol0.5 s)
Pconi,i = p, n positive and negative proportional coefficient of liquid-phase diffusion (mol m–3 A–1)
Qi, i = n, p capacities of effective active material in the electrodes (A s)
R ideal gas constant (J mol–1 K–1)
Rohm ohmic resistance (Ω)
T battery internal temperature (K)
t+ transport number (-)
Uapp terminal voltage for single cell (V)
x0 initial stoichiometric number of the negative electrode (-)
xavg solid-phase average stoichiometric number of the negative electrode (-)
xsurf solid-phase surface stoichiometric number of the negative electrode (-)
y0 initial stoichiometric number of the positive electrode (-)
yavg solid-phase average stoichiometric number of the positive electrode (-)
ysurf solid-phase surface stoichiometric number of the positive electrode (-)
∆ci, i = p, n change of electrolyte concentration in positive and negative current collectors

(mol m–3)
∆x deviations between xsurf and xavg (-)
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