Next Issue
Volume 3, March
Previous Issue
Volume 2, September
 
 

J. Dev. Biol., Volume 2, Issue 4 (December 2014) – 2 articles , Pages 198-229

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
4653 KiB  
Article
Observations on Lumbar Spinal Cord Recovery after Lesion in Lizards Indicates Regeneration of a Cellular and Fibrous Bridge Reconnecting the Injured Cord
by Lorenzo Alibardi
J. Dev. Biol. 2014, 2(4), 210-229; https://doi.org/10.3390/jdb2040210 - 19 Dec 2014
Cited by 398 | Viewed by 6121
Abstract
The lumbar spinal cords of lizards were transected, but after the initial paralysis most lizards recovered un-coordinated movements of hind limbs. At 25-45 days post-lesion about 50% of lizards were capable of walking with a limited coordination. Histological analysis showed that the spinal [...] Read more.
The lumbar spinal cords of lizards were transected, but after the initial paralysis most lizards recovered un-coordinated movements of hind limbs. At 25-45 days post-lesion about 50% of lizards were capable of walking with a limited coordination. Histological analysis showed that the spinal cord was transected and the ependyma of the central canal formed two enlargements to seal the proximal and distal ends of the severed spinal cord. Glial and few small neurons were formed while bridge axons crossed the gap between the proximal and the distal stumps of the transected spinal cord as was confirmed by retrograde tract-tracing technique. The bridging fibers likely derived from interneurons located in the central and dorsal grey matter of the proximal spinal cord stump suggesting they belong to the local central locomotory pattern generator circuit. The limited recovery of hind limb movements may derive from the regeneration or sprouting of short proprio-spinal axons joining the two stumps of the transected spinal cord. The present observations indicate that the study on spinal cord regeneration in lizards can give insights on the permissive conditions that favor nerve regeneration in amniotes. Full article
(This article belongs to the Special Issue Wound Healing and Tissue Regeneration)
Show Figures

Figure 1

7471 KiB  
Article
A Novel Three-Dimensional Wound Healing Model
by Zhuo J. Chen, Jessica P. Yang, Benjamin M. Wu and Bill Tawil
J. Dev. Biol. 2014, 2(4), 198-209; https://doi.org/10.3390/jdb2040198 - 19 Dec 2014
Cited by 398 | Viewed by 10013
Abstract
Wound healing is a well-orchestrated process, with various cells and growth factors coming into the wound bed at a specific time to influence the healing. Understanding the wound healing process is essential to generating wound healing products that help with hard-to-heal acute wounds [...] Read more.
Wound healing is a well-orchestrated process, with various cells and growth factors coming into the wound bed at a specific time to influence the healing. Understanding the wound healing process is essential to generating wound healing products that help with hard-to-heal acute wounds and chronic wounds. The 2D scratch assay whereby a wound is created by scratching a confluent layer of cells on a 2D substrate is well established and used extensively but it has a major limitationit lacks the complexity of the 3D wound healing environment. Established 3D wound healing models also have many limitations. In this paper, we present a novel 3D wound healing model that closely mimics the skin wound environment to study the cell migration of fibroblasts and keratinocytes. Three major components that exist in the wound environment are introduced in this new model: collagen, fibrin, and human foreskin fibroblasts. The novel 3D model consists of a defect, representing the actual wound, created by using a biopsy punch in a 3D collagen construct. The defect is then filled with collagen or with various solutions of fibrinogen and thrombin that polymerize into a 3D fibrin clot. Fibroblasts are then added on top of the collagen and their migration into the fibrin—or collagen—filled defect is followed for nine days. Our data clearly shows that fibroblasts migrate on both collagen and fibrin defects, though slightly faster on collagen defects than on fibrin defects. This paper shows the visibility of the model by introducing a defect filled with fibrin in a 3D collagen construct, thus mimicking a wound. Ongoing work examines keratinocyte migration on the defects of a 3D construct, which consists of collagen-containing fibroblasts. The model is also used to determine the effects of various growth factors, delivered in the wound defects, on fibroblasts’ and keratinocytes’ migration into the defects. Thus this novel 3D wound healing model provides a more complex wound healing assay than existing wound models. Full article
(This article belongs to the Special Issue Wound Healing and Tissue Regeneration)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop