Previous Issue
Volume 14, May
 
 

Biomolecules, Volume 14, Issue 6 (June 2024) – 86 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
27 pages, 1990 KiB  
Review
Paradoxes: Cholesterol and Hypoxia in Preeclampsia
by Nancy R. Hart
Biomolecules 2024, 14(6), 691; https://doi.org/10.3390/biom14060691 (registering DOI) - 13 Jun 2024
Viewed by 93
Abstract
Preeclampsia, a hypertensive disease of pregnancy of unknown etiology, is intensely studied as a model of cardiovascular disease (CVD) not only due to multiple shared pathologic elements but also because changes that develop over decades in CVD appear and resolve within days in [...] Read more.
Preeclampsia, a hypertensive disease of pregnancy of unknown etiology, is intensely studied as a model of cardiovascular disease (CVD) not only due to multiple shared pathologic elements but also because changes that develop over decades in CVD appear and resolve within days in preeclampsia. Those affected by preeclampsia and their offspring experience increased lifetime risks of CVD. At the systemic level, preeclampsia is characterized by increased cellular, membrane, and blood levels of cholesterol; however, cholesterol-dependent signaling, such as canonical Wnt/βcatenin, Hedgehog, and endothelial nitric oxide synthase, is downregulated indicating a cholesterol deficit with the upregulation of cholesterol synthesis and efflux. Hypoxia-related signaling in preeclampsia also appears to be paradoxical with increased Hypoxia-Inducible Factors in the placenta but measurably increased oxygen in maternal blood in placental villous spaces. This review addresses the molecular mechanisms by which excessive systemic cholesterol and deficient cholesterol-dependent signaling may arise from the effects of dietary lipid variance and environmental membrane modifiers causing the cellular hypoxia that characterizes preeclampsia. Full article
(This article belongs to the Special Issue Lipids Metabolism in Cardiovascular Disease)
15 pages, 1288 KiB  
Article
Effects of A1 Milk, A2 Milk and the Opioid-like Peptide β-Casomorphine-7 on the Proliferation of Human Peripheral Blood Mononuclear Cells
by Felix Gard, Lili M. Flad, Tanja Weißer, Hermann Ammer and Cornelia A. Deeg
Biomolecules 2024, 14(6), 690; https://doi.org/10.3390/biom14060690 (registering DOI) - 13 Jun 2024
Viewed by 107
Abstract
Special attention is given to cow’s milk and its variants, with ongoing discussions about health-related impacts primarily focusing on the A1 variant in contrast to the A2 variant. The difference between these variants lies in a single amino acid alteration at position 67 [...] Read more.
Special attention is given to cow’s milk and its variants, with ongoing discussions about health-related impacts primarily focusing on the A1 variant in contrast to the A2 variant. The difference between these variants lies in a single amino acid alteration at position 67 of β-casein. This alteration is presumed to make the A1 variant more susceptible to enzymatic breakdown during milk digestion, leading to an increased release of the peptide β-casomorphin-7 (BCM-7). BCM-7 is hypothesized to interact with µ-opioid receptors on immune cells in humans. Although BCM-7 has demonstrated both immunosuppressive and inflammatory effects, its direct impact on the immune system remains unclear. Thus, we examined the influence of A1 and A2 milk on Concanavalin A (ConA)-stimulated human peripheral blood mononuclear cells (PBMCs), as well as the effect of experimentally digested A1 and A2 milk, containing different amounts of free BCM-7 from β-casein cleavage. Additionally, we evaluated the effects of pure BCM-7 on the proliferation of ConA-stimulated PBMCs and purified CD4+ T cells. Milk fundamentally inhibited PBMC proliferation, independent of the β-casein variant. In contrast, experimentally digested milk of both variants and pure BCM-7 showed no influence on the proliferation of PBMCs or isolated CD4+ T cells. Our results indicate that milk exerts an anti-inflammatory effect on PBMCs, regardless of the A1 or A2 β-casein variant, which is nullified after in vitro digestion. Consequently, we deem BCM-7 unsuitable as a biomarker for food-induced inflammation. Full article
(This article belongs to the Special Issue Immune-Related Biomarkers II)
Show Figures

Graphical abstract

31 pages, 2230 KiB  
Review
Insights into the Role of Glutathione Peroxidase 3 in Non-Neoplastic Diseases
by Nan Zhang, Haihan Liao, Zheng Lin and Qizhu Tang
Biomolecules 2024, 14(6), 689; https://doi.org/10.3390/biom14060689 (registering DOI) - 13 Jun 2024
Viewed by 128
Abstract
Reactive oxygen species (ROSs) are byproducts of normal cellular metabolism and play pivotal roles in various physiological processes. Disruptions in the balance between ROS levels and the body’s antioxidant defenses can lead to the development of numerous diseases. Glutathione peroxidase 3 (GPX3), a [...] Read more.
Reactive oxygen species (ROSs) are byproducts of normal cellular metabolism and play pivotal roles in various physiological processes. Disruptions in the balance between ROS levels and the body’s antioxidant defenses can lead to the development of numerous diseases. Glutathione peroxidase 3 (GPX3), a key component of the body’s antioxidant system, is an oxidoreductase enzyme. GPX3 mitigates oxidative damage by catalyzing the conversion of hydrogen peroxide into water. Beyond its antioxidant function, GPX3 is vital in regulating metabolism, modulating cell growth, inducing apoptosis and facilitating signal transduction. It also serves as a significant tumor suppressor in various cancers. Recent studies have revealed aberrant expression of GPX3 in several non-neoplastic diseases, associating it with multiple pathological processes. This review synthesizes the current understanding of GPX3 expression and regulation, highlighting its extensive roles in noncancerous diseases. Additionally, this paper evaluates the potential of GPX3 as a diagnostic biomarker and explores emerging therapeutic strategies targeting this enzyme, offering potential avenues for future clinical treatment of non-neoplastic conditions. Full article
Show Figures

Figure 1

14 pages, 2204 KiB  
Article
Haloperidol, Olanzapine, and Risperidone Induce Morphological Changes in an In Vitro Model of Human Hippocampal Neurogenesis
by Bálint Jezsó, Sára Kálmán, Kiara Gitta Farkas, Edit Hathy, Katalin Vincze, Dzsenifer Kovács-Schoblocher, Julianna Lilienberg, Csongor Tordai, Zsófia Nemoda, László Homolya, Ágota Apáti and János M. Réthelyi
Biomolecules 2024, 14(6), 688; https://doi.org/10.3390/biom14060688 (registering DOI) - 13 Jun 2024
Viewed by 138
Abstract
Background: Induced pluripotent stem cell (iPSC) based neuronal differentiation is valuable for studying neuropsychiatric disorders and pharmacological mechanisms at the cellular level. We aimed to examine the effects of typical and atypical antipsychotics on human iPSC-derived neural progenitor cells (NPCs). Methods: Proliferation and [...] Read more.
Background: Induced pluripotent stem cell (iPSC) based neuronal differentiation is valuable for studying neuropsychiatric disorders and pharmacological mechanisms at the cellular level. We aimed to examine the effects of typical and atypical antipsychotics on human iPSC-derived neural progenitor cells (NPCs). Methods: Proliferation and neurite outgrowth were measured by live cell imaging, and gene expression levels related to neuronal identity were analyzed by RT-QPCR and immunocytochemistry during differentiation into hippocampal dentate gyrus granule cells following treatment of low- and high-dose antipsychotics (haloperidol, olanzapine, and risperidone). Results: Antipsychotics did not modify the growth properties of NPCs after 3 days of treatment. However, the characteristics of neurite outgrowth changed significantly in response to haloperidol and olanzapine. After three weeks of differentiation, mRNA expression levels of the selected neuronal markers increased (except for MAP2), while antipsychotics caused only subtle changes. Additionally, we found no changes in MAP2 or GFAP protein expression levels as a result of antipsychotic treatment. Conclusions: Altogether, antipsychotic medications promoted neurogenesis in vitro by influencing neurite outgrowth rather than changing cell survival or gene expression. This study provides insights into the effects of antipsychotics on neuronal differentiation and highlights the importance of considering neurite outgrowth as a potential target of action. Full article
(This article belongs to the Special Issue Molecular Insights into the Mechanism of Antipsychotic Drugs)
Show Figures

Figure 1

15 pages, 1033 KiB  
Review
Implications of GLP-1 Receptor Agonist on Thyroid Function: A Literature Review of Its Effects on Thyroid Volume, Risk of Cancer, Functionality and TSH Levels
by Stefania Capuccio, Sabrina Scilletta, Francesca La Rocca, Nicoletta Miano, Maurizio Di Marco, Giosiana Bosco, Francesco Di Giacomo Barbagallo, Roberto Scicali, Salvatore Piro and Antonino Di Pino
Biomolecules 2024, 14(6), 687; https://doi.org/10.3390/biom14060687 (registering DOI) - 13 Jun 2024
Viewed by 146
Abstract
The increasing utilization of Glucagon-like Peptide-1 receptor agonists (GLP-1 RAs) in managing type 2 diabetes mellitus has raised interest regarding their impact on thyroid function. In fact, while these agents are well known for their efficacy in glycemic control and weight management, their [...] Read more.
The increasing utilization of Glucagon-like Peptide-1 receptor agonists (GLP-1 RAs) in managing type 2 diabetes mellitus has raised interest regarding their impact on thyroid function. In fact, while these agents are well known for their efficacy in glycemic control and weight management, their association with thyroid disorders requires clarification due to the complex interplay between thyroid hormones and metabolic pathways. Thyroid dysfunction commonly co-occurs with metabolic conditions such as diabetes and obesity, suggesting a profound interconnection between these systems. This review aims to contribute to a deeper understanding of the interaction between GLP-1 RAs and thyroid dysfunction and to clarify the safety of GLP-1 RAs in diabetic patients with thyroid disorders. By synthesizing existing evidence, this review highlights that, despite various studies exploring this topic, current evidence is inconclusive, with conflicting results. It is important to note that these drugs are relatively recent, and longer-term studies with larger sample sizes are likely needed to draw clearer conclusions. Currently, no existing guidelines provide definitive directions on this clinical issue; however, it is advisable to include thyroid function tests in the routine screening of diabetic patients, particularly those treated with GLP-1 Ras, with the goal of optimizing patient care and management. Full article
Show Figures

Figure 1

19 pages, 4078 KiB  
Article
The Improved Antineoplastic Activity of Thermophilic L-Asparaginase Tli10209 via Site-Directed Mutagenesis
by Lijuan Zhang, Simeng Ding, Xiuhui Tang, Renjun Gao, Rui Huo and Guiqiu Xie
Biomolecules 2024, 14(6), 686; https://doi.org/10.3390/biom14060686 (registering DOI) - 12 Jun 2024
Viewed by 172
Abstract
Amino acid deprivation therapy (AADT) is a novel anticancer therapy, considered nontoxic and selective. Thermophilic L-asparaginase enzymes display high stability and activity at elevated temperatures. However, they are of limited use in clinical applications because of their low substrate affinity and reduced activity [...] Read more.
Amino acid deprivation therapy (AADT) is a novel anticancer therapy, considered nontoxic and selective. Thermophilic L-asparaginase enzymes display high stability and activity at elevated temperatures. However, they are of limited use in clinical applications because of their low substrate affinity and reduced activity under physiological conditions, which may necessitate an improved dosage, leading to side effects and greater costs. Thus, in an attempt to improve the activity of L-Asn at 37 °C, with the use of a semi-rational design, eight active-site mutants of Thermococcus litoralis DSM 5473 L-asparaginase Tli10209 were developed. T70A exhibited a 5.11-fold increase compared with the wild enzyme in physiological conditions. Double-mutant enzymes were created by combining mutants with higher hydrolysis activity. T70A/F36Y, T70A/K48L, and T70A/D50G were enhanced by 5.59-, 6.38-, and 5.58-fold. The immobilized enzyme applied in MCF-7 breast cancer cells only required one-seventh of the dose of the free enzyme to achieve the same inhibition rate under near-infrared irradiation. This provides a proof of concept that it is possible to reduce the consumption of L-Asn by improving its activity, thus providing a method to manage side effects. Full article
(This article belongs to the Section Biomacromolecules: Proteins)
22 pages, 1607 KiB  
Review
pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization
by Pengyuan Dai, Meng Zou, Ziyi Cai, Xuhui Zeng, Xiaoning Zhang and Min Liang
Biomolecules 2024, 14(6), 685; https://doi.org/10.3390/biom14060685 - 12 Jun 2024
Viewed by 213
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3 and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize [...] Read more.
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3 and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3 transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3 or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis’s low HCO3 concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3 in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends. Full article
Show Figures

Figure 1

19 pages, 4548 KiB  
Review
The Long Journey from Animal Electricity to the Discovery of Ion Channels and the Modelling of the Human Brain
by Luigi Catacuzzeno, Antonio Michelucci and Fabio Franciolini
Biomolecules 2024, 14(6), 684; https://doi.org/10.3390/biom14060684 - 12 Jun 2024
Viewed by 200
Abstract
This retrospective begins with Galvani’s experiments on frogs at the end of the 18th century and his discovery of ‘animal electricity’. It goes on to illustrate the numerous contributions to the field of physical chemistry in the second half of the 19th century [...] Read more.
This retrospective begins with Galvani’s experiments on frogs at the end of the 18th century and his discovery of ‘animal electricity’. It goes on to illustrate the numerous contributions to the field of physical chemistry in the second half of the 19th century (Nernst’s equilibrium potential, based on the work of Wilhelm Ostwald, Max Planck’s ion electrodiffusion, Einstein’s studies of Brownian motion) which led Bernstein to propose his membrane theory in the early 1900s as an explanation of Galvani’s findings and cell excitability. These processes were fully elucidated by Hodgkin and Huxley in 1952 who detailed the ionic basis of resting and action potentials, but without addressing the question of where these ions passed. The emerging question of the existence of ion channels, widely debated over the next two decades, was finally accepted and, a decade later, many of them began to be cloned. This led to the possibility of modelling the activity of individual neurons in the brain and then that of simple circuits. Taking advantage of the remarkable advances in computer science in the new millennium, together with a much deeper understanding of brain architecture, more ambitious scientific goals were dreamed of to understand the brain and how it works. The retrospective concludes by reviewing the main efforts in this direction, namely the construction of a digital brain, an in silico copy of the brain that would run on supercomputers and behave just like a real brain. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

15 pages, 1565 KiB  
Review
Unraveling the Immune Regulatory Functions of USP5: Implications for Disease Therapy
by Jinyi Gu, Changshun Chen, Pu He, Yunjie Du and Bingdong Zhu
Biomolecules 2024, 14(6), 683; https://doi.org/10.3390/biom14060683 (registering DOI) - 12 Jun 2024
Viewed by 322
Abstract
Ubiquitin-specific protease 5 (USP5) belongs to the ubiquitin-specific protease (USP) family, which uniquely recognizes unanchored polyubiquitin chains to maintain the homeostasis of monoubiquitin chains. USP5 participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins [...] Read more.
Ubiquitin-specific protease 5 (USP5) belongs to the ubiquitin-specific protease (USP) family, which uniquely recognizes unanchored polyubiquitin chains to maintain the homeostasis of monoubiquitin chains. USP5 participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins or ubiquitin itself. In the process of immune regulation, USP5 affects important cellular signaling pathways, such as NF-κB, Wnt/β-catenin, and IFN, by regulating ubiquitin-dependent protein degradation. These pathways play important roles in immune regulation and inflammatory responses. In addition, USP5 regulates the activity and function of immunomodulatory signaling pathways via the deubiquitination of key proteins, thereby affecting the activity of immune cells and the regulation of immune responses. In the present review, the structure and function of USP5, its role in immune regulation, and the mechanism by which USP5 affects the development of diseases by regulating immune signaling pathways are comprehensively overviewed. In addition, we also introduce the latest research progress of targeting USP5 in the treatment of related diseases, calling for an interdisciplinary approach to explore the therapeutic potential of targeting USP5 in immune regulation. Full article
(This article belongs to the Special Issue Immune-Related Biomarkers II)
Show Figures

Figure 1

17 pages, 18387 KiB  
Article
Integration of Proteomic and Metabolomic Data Reveals the Lipid Metabolism Disorder in the Liver of Rats Exposed to Simulated Microgravity
by Mengyao Ru, Jun He, Yungang Bai, Kun Zhang, Qianqian Shi, Fang Gao, Yunying Wang, Baoli Li and Lan Shen
Biomolecules 2024, 14(6), 682; https://doi.org/10.3390/biom14060682 - 12 Jun 2024
Viewed by 210
Abstract
Long-term exposure to microgravity is considered to cause liver lipid accumulation, thereby increasing the risk of non-alcoholic fatty liver disease (NAFLD) among astronauts. However, the reasons for this persistence of symptoms remain insufficiently investigated. In this study, we used tandem mass tag (TMT)-based [...] Read more.
Long-term exposure to microgravity is considered to cause liver lipid accumulation, thereby increasing the risk of non-alcoholic fatty liver disease (NAFLD) among astronauts. However, the reasons for this persistence of symptoms remain insufficiently investigated. In this study, we used tandem mass tag (TMT)-based quantitative proteomics techniques, as well as non-targeted metabolomics techniques based on liquid chromatography–tandem mass spectrometry (LC–MS/MS), to comprehensively analyse the relative expression levels of proteins and the abundance of metabolites associated with lipid accumulation in rat liver tissues under simulated microgravity conditions. The differential analysis revealed 63 proteins and 150 metabolites between the simulated microgravity group and the control group. By integrating differentially expressed proteins and metabolites and performing pathway enrichment analysis, we revealed the dysregulation of major metabolic pathways under simulated microgravity conditions, including the biosynthesis of unsaturated fatty acids, linoleic acid metabolism, steroid hormone biosynthesis and butanoate metabolism, indicating disrupted liver metabolism in rats due to weightlessness. Finally, we examined differentially expressed proteins associated with lipid metabolism in the liver of rats exposed to stimulated microgravity. These findings contribute to identifying the key molecules affected by microgravity and could guide the design of rational nutritional or pharmacological countermeasures for astronauts. Full article
Show Figures

Figure 1

16 pages, 3402 KiB  
Article
Repair and DNA Polymerase Bypass of Clickable Pyrimidine Nucleotides
by Anton V. Endutkin, Anna V. Yudkina, Timofey D. Zharkov, Alexander E. Barmatov, Daria V. Petrova, Daria V. Kim and Dmitry O. Zharkov
Biomolecules 2024, 14(6), 681; https://doi.org/10.3390/biom14060681 - 12 Jun 2024
Viewed by 200
Abstract
Clickable nucleosides, most often 5-ethynyl-2′-deoxyuridine (EtU), are widely used in studies of DNA replication in living cells and in DNA functionalization for bionanotechology applications. Although clickable dNTPs are easily incorporated by DNA polymerases into the growing chain, afterwards they might become targets for [...] Read more.
Clickable nucleosides, most often 5-ethynyl-2′-deoxyuridine (EtU), are widely used in studies of DNA replication in living cells and in DNA functionalization for bionanotechology applications. Although clickable dNTPs are easily incorporated by DNA polymerases into the growing chain, afterwards they might become targets for DNA repair systems or interfere with faithful nucleotide insertion. Little is known about the possibility and mechanisms of these post-synthetic events. Here, we investigated the repair and (mis)coding properties of EtU and two bulkier clickable pyrimidine nucleosides, 5-(octa-1,7-diyn-1-yl)-U (C8-AlkU) and 5-(octa-1,7-diyn-1-yl)-C (C8-AlkC). In vitro, EtU and C8-AlkU, but not C8-AlkC, were excised by SMUG1 and MBD4, two DNA glycosylases from the base excision repair pathway. However, when placed into a plasmid encoding a fluorescent reporter inactivated by repair in human cells, EtU and C8-AlkU persisted for much longer than uracil or its poorly repairable phosphorothioate-flanked derivative. DNA polymerases from four different structural families preferentially bypassed EtU, C8-AlkU and C8-AlkC in an error-free manner, but a certain degree of misincorporation was also observed, especially evident for DNA polymerase β. Overall, clickable pyrimidine nucleotides could undergo repair and be a source of mutations, but the frequency of such events in the cell is unlikely to be considerable. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

24 pages, 4354 KiB  
Review
Translational Medicine in Acute Ischemic Stroke and Traumatic Brain Injury—NeuroAiD Trials, from Traditional Beliefs to Evidence-Based Therapy
by Narayanaswamy Venketasubramanian, Tseng Tsai Yeo and Christopher Li Hsian Chen
Biomolecules 2024, 14(6), 680; https://doi.org/10.3390/biom14060680 - 11 Jun 2024
Viewed by 312
Abstract
Acute ischemic stroke (AIS) and traumatic brain injury (TBI) are two severe neurological events, both being major causes of death and prolonged impairment. Their incidence continues to rise due to the global increase in the number of people at risk, representing a significant [...] Read more.
Acute ischemic stroke (AIS) and traumatic brain injury (TBI) are two severe neurological events, both being major causes of death and prolonged impairment. Their incidence continues to rise due to the global increase in the number of people at risk, representing a significant burden on those remaining impaired, their families, and society. These molecular and cellular mechanisms of both stroke and TBI present similarities that can be targeted by treatments with a multimodal mode of action, such as traditional Chinese medicine. Therefore, we performed a detailed review of the preclinical and clinical development of MLC901 (NeuroAiDTMII), a natural multi-herbal formulation targeting several biological pathways at the origin of the clinical deficits. The endogenous neurobiological processes of self-repair initiated by the brain in response to the onset of brain injury are often insufficient to achieve complete recovery of impaired functions. This review of MLC901 and its parent formulation MLC601 confirms that it amplifies the natural self-repair process of brain tissue after AIS or TBI. Following AIS and TBI where "time is brain", many patients enter the post-acute phase with their functions still impaired, a period when "the brain needs time to repair itself". The treatment goal must be to accelerate recovery as much as possible. MLC901/601 demonstrated a significant reduction by 18 months of recovery time compared to a placebo, indicating strong potential for facilitating the improvement of health outcomes and the more efficient use of healthcare resources. Full article
Show Figures

Figure 1

37 pages, 9291 KiB  
Article
New Heterostilbene and Triazole Oximes as Potential CNS-Active and Cholinesterase-Targeted Therapeutics
by Milena Mlakić, Tena Čadež, Goran Šinko, Irena Škorić and Zrinka Kovarik
Biomolecules 2024, 14(6), 679; https://doi.org/10.3390/biom14060679 - 11 Jun 2024
Viewed by 273
Abstract
New furan, thiophene, and triazole oximes were synthesized through several-step reaction paths to investigate their potential for the development of central nervous systems (CNS)-active and cholinesterase-targeted therapeutics in organophosphorus compound (OP) poisonings. Treating patients with acute OP poisoning is still a challenge despite [...] Read more.
New furan, thiophene, and triazole oximes were synthesized through several-step reaction paths to investigate their potential for the development of central nervous systems (CNS)-active and cholinesterase-targeted therapeutics in organophosphorus compound (OP) poisonings. Treating patients with acute OP poisoning is still a challenge despite the development of a large number of oxime compounds that should have the capacity to reactivate acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The activity of these two enzymes, crucial for neurotransmission, is blocked by OP, which has the consequence of disturbing normal cholinergic nerve signal transduction in the peripheral and CNS, leading to a cholinergic crisis. The oximes in use have one or two pyridinium rings and cross the brain–blood barrier poorly due to the quaternary nitrogen. Following our recent study on 2-thienostilbene oximes, in this paper, we described the synthesis of 63 heterostilbene derivatives, of which 26 oximes were tested as inhibitors and reactivators of AChE and BChE inhibited by OP nerve agents–sarin and cyclosarin. While the majority of oximes were potent inhibitors of both enzymes in the micromolar range, we identified several oximes as BChE or AChE selective inhibitors with the potential for drug development. Furthermore, the oximes were poor reactivators of AChE; four heterocyclic derivatives reactivated cyclosarin-inhibited BChE up to 70%, and cis,trans-5 [2-((Z)-2-(5-((E)-(hydroxyimino)methyl)thiophen-2-yl)vinyl)benzonitrile] had a reactivation efficacy comparable to the standard oxime HI-6. In silico analysis and molecular docking studies, including molecular dynamics simulation, connected kinetic data to the structural features of these oximes and confirmed their productive interactions with the active site of cyclosarin-inhibited BChE. Based on inhibition and reactivation and their ADMET properties regarding lipophilicity, CNS activity, and hepatotoxicity, these compounds could be considered for further development of CNS-active reactivators in OP poisoning as well as cholinesterase-targeted therapeutics in neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Full article
Show Figures

Figure 1

22 pages, 9815 KiB  
Article
Examining Transcriptomic Alterations in Rat Models of Intracerebral Hemorrhage and Severe Intracerebral Hemorrhage
by Shaik Ismail Mohammed Thangameeran, Sheng-Tzung Tsai, Hock-Kean Liew and Cheng-Yoong Pang
Biomolecules 2024, 14(6), 678; https://doi.org/10.3390/biom14060678 - 11 Jun 2024
Viewed by 279
Abstract
Intracerebral hemorrhage (ICH) is a life-threatening condition associated with significant morbidity and mortality. This study investigates transcriptomic alterations in rodent models of ICH and severe ICH to shed light on the genetic pathways involved in hemorrhagic brain injury. We performed principal component analysis, [...] Read more.
Intracerebral hemorrhage (ICH) is a life-threatening condition associated with significant morbidity and mortality. This study investigates transcriptomic alterations in rodent models of ICH and severe ICH to shed light on the genetic pathways involved in hemorrhagic brain injury. We performed principal component analysis, revealing distinct principal component segments of normal rats compared to ICH and severe ICH rats. We employed heatmaps and volcano plots to identify differentially expressed genes and utilized bar plots and KEGG pathway analysis to elucidate the molecular pathways involved. We identified a multitude of differentially expressed genes in both the ICH and severe ICH models. Our results revealed 5679 common genes among the normal, ICH, and severe ICH groups in the upregulated genes group, and 1196 common genes in the downregulated genes, respectively. A volcano plot comparing these groups further highlighted common genes, including PDPN, TIMP1, SERPINE1, TUBB6, and CD44. These findings underscore the complex interplay of genes involved in inflammation, oxidative stress, and neuronal damage. Furthermore, pathway enrichment analysis uncovered key signaling pathways, including the TNF signaling pathway, protein processing in the endoplasmic reticulum, MAPK signaling pathway, and Fc gamma R-mediated phagocytosis, implicated in the pathogenesis of ICH. Full article
(This article belongs to the Special Issue Intracerebral Hemorrhage: Advances in Preclinical Studies 2.0)
Show Figures

Figure 1

20 pages, 138728 KiB  
Article
Multi-Omics Insights into Disulfidptosis-Related Genes Reveal RPN1 as a Therapeutic Target for Liver Cancer
by Yan He, Yue Hu, Yunsheng Cheng, Xutong Li, Chuanhong Chen, Shijie Zhang, Huihu He and Feng Cao
Biomolecules 2024, 14(6), 677; https://doi.org/10.3390/biom14060677 - 10 Jun 2024
Viewed by 429
Abstract
Disulfidptosis, a newly identified mode of programmed cell death, is yet to be comprehensively elucidated with respect to its multi-omics characteristics in tumors, specific pathogenic mechanisms, and antitumor functions in liver cancer. This study included 10,327 tumor and normal tissue samples from 33 [...] Read more.
Disulfidptosis, a newly identified mode of programmed cell death, is yet to be comprehensively elucidated with respect to its multi-omics characteristics in tumors, specific pathogenic mechanisms, and antitumor functions in liver cancer. This study included 10,327 tumor and normal tissue samples from 33 cancer types. In-depth analyses using various bioinformatics tools revealed widespread dysregulation of disulfidptosis-related genes (DRGs) in pan-cancer and significant associations with prognosis, genetic variations, tumor stemness, methylation levels, and drug sensitivity. Univariate and multivariate Cox regression and LASSO regression were used to screen and construct prognosis-related hub DRGs and predictive models in the context of liver cancer. Subsequently, single cell analysis was conducted to investigate the subcellular localization of RPN1, a hub DRG, in various solid tumors. Western blotting was performed to validate the expression of RPN1 at both cellular and tissue levels. Additionally, functional experiments, including CCK8, EdU, clone, and transwell assays, indicated that RPN1 knockdown promoted the proliferative and invasive capacities of liver cancer cells. Therefore, this study elucidated the multi-omics characteristics of DRGs in pan-cancer and established a prognostic model for liver cancer. Additionally, this study revealed the molecular functions of RPN1 in liver cancer, suggesting its potential as a therapeutic target for this disease. Full article
Show Figures

Graphical abstract

13 pages, 1328 KiB  
Review
Role of Secretory Mucins in the Occurrence and Development of Cholelithiasis
by Zeying Zhao, Ye Yang, Shuodong Wu and Dianbo Yao
Biomolecules 2024, 14(6), 676; https://doi.org/10.3390/biom14060676 - 10 Jun 2024
Viewed by 450
Abstract
Cholelithiasis is a common biliary tract disease. However, the exact mechanism underlying gallstone formation remains unclear. Mucin plays a vital role in the nuclear formation and growth of cholesterol and pigment stones. Excessive mucin secretion can result in cholestasis and decreased gallbladder activity, [...] Read more.
Cholelithiasis is a common biliary tract disease. However, the exact mechanism underlying gallstone formation remains unclear. Mucin plays a vital role in the nuclear formation and growth of cholesterol and pigment stones. Excessive mucin secretion can result in cholestasis and decreased gallbladder activity, further facilitating stone formation and growth. Moreover, gallstones may result in inflammation and the secretion of inflammatory factors, which can further increase mucin expression and secretion to promote the growth of gallstones. This review systematically summarises and analyses the role of mucins in gallstone occurrence and development and its related mechanisms to explore new ideas for interventions in stone formation or recurrence. Full article
Show Figures

Figure 1

15 pages, 1446 KiB  
Article
Perimenopause Decreases SERCA2a Activity in the Hearts of a Mouse Model of Ovarian Failure
by Ciara Barry, Sarah Rouhana, Jessica L. Braun, Mia S. Geromella, Val A. Fajardo and W. Glen Pyle
Biomolecules 2024, 14(6), 675; https://doi.org/10.3390/biom14060675 - 9 Jun 2024
Viewed by 470
Abstract
Risk of cardiovascular disease mortality rises in women after menopause. While increased cardiovascular risk is largely attributed to postmenopausal declines in estrogens, the molecular changes in the heart that contribute to risk are poorly understood. Disruptions in intracellular calcium handling develop in ovariectomized [...] Read more.
Risk of cardiovascular disease mortality rises in women after menopause. While increased cardiovascular risk is largely attributed to postmenopausal declines in estrogens, the molecular changes in the heart that contribute to risk are poorly understood. Disruptions in intracellular calcium handling develop in ovariectomized mice and have been implicated in cardiac dysfunction. Using a mouse model of menopause in which ovarian failure occurs over 120 days, we sought to determine if perimenopause impacted calcium removal mechanisms in the heart and identify the molecular mechanisms. Mice were injected with 4-vinylcyclohexene diepoxide (VCD) to induce ovarian failure over 120 days, mimicking perimenopause. Hearts were removed at 60 and 120 days after VCD injections, representing the middle and end of perimenopause. SERCA2a function was significantly diminished at the end of perimenopause. Neither SERCA2a nor phospholamban expression changed at either time point, but phospholamban phosphorylation at S16 and T17 was dynamically altered. Intrinsic SERCA inhibitors sarcolipin and myoregulin increased >4-fold at day 60, as did the native activator DWORF. At the end of perimenopause, sarcolipin and myoregulin returned to baseline levels while DWORF was significantly reduced below controls. Sodium–calcium exchanger expression was significantly increased at the end of perimenopause. These results show that the foundation for increased cardiovascular disease mortality develops in the heart during perimenopause and that regulators of calcium handling exhibit significant fluctuations over time. Understanding the temporal development of cardiovascular risk associated with menopause and the underlying mechanisms is critical to developing interventions that mitigate the rise in cardiovascular mortality that arises after menopause. Full article
(This article belongs to the Special Issue Heart Diseases: Molecular Mechanisms and New Therapies)
Show Figures

Figure 1

19 pages, 21255 KiB  
Article
Accurate Identification of Spatial Domain by Incorporating Global Spatial Proximity and Local Expression Proximity
by Yuanyuan Yu, Yao He and Zhi Xie
Biomolecules 2024, 14(6), 674; https://doi.org/10.3390/biom14060674 - 9 Jun 2024
Viewed by 273
Abstract
Accurate identification of spatial domains is essential in the analysis of spatial transcriptomics data in order to elucidate tissue microenvironments and biological functions. However, existing methods only perform domain segmentation based on local or global spatial relationships between spots, resulting in an underutilization [...] Read more.
Accurate identification of spatial domains is essential in the analysis of spatial transcriptomics data in order to elucidate tissue microenvironments and biological functions. However, existing methods only perform domain segmentation based on local or global spatial relationships between spots, resulting in an underutilization of spatial information. To this end, we propose SECE, a deep learning-based method that captures both local and global relationships among spots and aggregates their information using expression similarity and spatial similarity. We benchmarked SECE against eight state-of-the-art methods on six real spatial transcriptomics datasets spanning four different platforms. SECE consistently outperformed other methods in spatial domain identification accuracy. Moreover, SECE produced spatial embeddings that exhibited clearer patterns in low-dimensional visualizations and facilitated a more accurate trajectory inference. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

19 pages, 460 KiB  
Review
Targets to Search for New Pharmacological Treatment in Idiopathic Parkinson’s Disease According to the Single-Neuron Degeneration Model
by Sandro Huenchuguala and Juan Segura-Aguilar
Biomolecules 2024, 14(6), 673; https://doi.org/10.3390/biom14060673 - 8 Jun 2024
Viewed by 227
Abstract
One of the biggest problems in the treatment of idiopathic Parkinson’s disease is the lack of new drugs that slow its progression. L-Dopa remains the star drug in the treatment of this disease, although it induces severe side effects. The failure of clinical [...] Read more.
One of the biggest problems in the treatment of idiopathic Parkinson’s disease is the lack of new drugs that slow its progression. L-Dopa remains the star drug in the treatment of this disease, although it induces severe side effects. The failure of clinical studies with new drugs depends on the use of preclinical models based on neurotoxins that do not represent what happens in the disease since they induce rapid and expansive neurodegeneration. We have recently proposed a single-neuron degeneration model for idiopathic Parkinson’s disease that requires years to accumulate enough lost neurons for the onset of motor symptoms. This single-neuron degeneration model is based on the excessive formation of aminochrome during neuromelanin synthesis that surpass the neuroprotective action of the enzymes DT-diaphorase and glutathione transferase M2-2, which prevent the neurotoxic effects of aminochrome. Although the neurotoxic effects of aminochrome do not have an expansive effect, a stereotaxic injection of this endogenous neurotoxin cannot be used to generate a preclinical model in an animal. Therefore, the aim of this review is to evaluate the strategies for pharmacologically increasing the expression of DT diaphorase and GSTM2-2 and molecules that induce the expression of vesicular monoamine transporter 2, such as pramipexole. Full article
Show Figures

Graphical abstract

18 pages, 7417 KiB  
Article
Anti-Inflammatory Responses Produced with Nippostrongylus brasiliensis-Derived Uridine via the Mitochondrial ATP-Sensitive Potassium Channel and Its Anti-Atherosclerosis Effect in an Apolipoprotein E Gene Knockout Mouse Model
by Yingshu Zhang, Xin Ding, Caiyi Yuan, Yougui Yang, Qiang Zhang, Jiakai Yao, Ying Zhang, Junhong Wang and Yang Dai
Biomolecules 2024, 14(6), 672; https://doi.org/10.3390/biom14060672 - 8 Jun 2024
Viewed by 284
Abstract
Atherosclerosis (AS) has become the leading cause of cardiovascular disease worldwide. Our previous study had observed that Nippostrongylus brasiliensis (Nb) infection or its derived products could inhibit AS development by inducing an anti-inflammatory response. We performed a metabolic analysis to screen Nb-derived metabolites [...] Read more.
Atherosclerosis (AS) has become the leading cause of cardiovascular disease worldwide. Our previous study had observed that Nippostrongylus brasiliensis (Nb) infection or its derived products could inhibit AS development by inducing an anti-inflammatory response. We performed a metabolic analysis to screen Nb-derived metabolites with anti-inflammation activity and evaluated the AS-prevention effect. We observed that the metabolite uridine had higher expression levels in mice infected with the Nb and ES (excretory–secretory) products and could be selected as a key metabolite. ES and uridine interventions could reduce the pro-inflammatory responses and increase the anti-inflammatory responses in vitro and in vivo. The apolipoprotein E gene knockout (ApoE−/−) mice were fed with a high-fat diet for the AS modeling. Following the in vivo intervention, ES products or uridine significantly reduced serum and liver lipid levels, alleviated the formation of atherosclerosis, and reduced the pro-inflammatory responses in serum or plaques, while the anti-inflammatory responses showed opposite trends. After blocking with 5-HD (5-hydroxydecanoate sodium) in vitro, the mRNA levels of M2 markers were significantly reduced. When blocked with 5-HD in vivo, the degree of atherosclerosis was worsened, the pro-inflammatory responses were increased compared to the uridine group, while the anti-inflammatory responses decreased accordingly. Uridine, a key metabolite from Nippostrongylus brasiliensis, showed anti-inflammatory and anti-atherosclerotic effects in vitro and in vivo, which depend on the activation of the mitochondrial ATP-sensitive potassium channel. Full article
Show Figures

Graphical abstract

20 pages, 6833 KiB  
Article
Human Menstrual Blood-Derived Stem Cells Protect against Tacrolimus-Induced Islet Dysfunction via Cystathionine β-Synthase Mediated IL-6/STAT3 Inactivation
by Jiamin Fu, Qi Zhang, Ning Zhang, Sining Zhou, Yangxin Fang, Yifei Li, Li Yuan, Lijun Chen and Charlie Xiang
Biomolecules 2024, 14(6), 671; https://doi.org/10.3390/biom14060671 - 8 Jun 2024
Viewed by 260
Abstract
Diabetes imposes a huge burden worldwide. Islet transplantation is an alternative therapy for diabetes. However, tacrolimus, a kind of immunosuppressant after organ transplantation, is closely related to post-transplant diabetes mellitus. Mesenchymal stem cells (MSCs) have attracted interest for their potential to alleviate diabetes. [...] Read more.
Diabetes imposes a huge burden worldwide. Islet transplantation is an alternative therapy for diabetes. However, tacrolimus, a kind of immunosuppressant after organ transplantation, is closely related to post-transplant diabetes mellitus. Mesenchymal stem cells (MSCs) have attracted interest for their potential to alleviate diabetes. In vivo experiments revealed that human menstrual blood-derived stem cells (MenSCs) treatment improved tacrolimus-induced blood glucose, body weight, and glucose tolerance disorders in mice. RNA sequencing was used to analyze the potential therapeutic targets of MenSCs. In this study, we illustrated that cystathionine β-synthase (CBS) contributed to tacrolimus -induced islet dysfunction. Using β-cell lines (MIN6, β-TC-6), we demonstrated that MenSCs ameliorated tacrolimus-induced islet dysfunction in vitro. Moreover, MenSC reduced the tacrolimus-induced elevation of CBS levels and significantly enhanced the viability, anti-apoptotic ability, glucose-stimulated insulin secretion (GSIS), and glycolytic flux of β-cells. We further revealed that MenSCs exerted their therapeutic effects by inhibiting CBS expression to activate the IL6/JAK2/STAT3 pathway. In conclusion, we showed that MenSCs may be a potential strategy to improve tacrolimus-induced islet dysfunction. Full article
32 pages, 1440 KiB  
Review
Mitochondrial Reactive Oxygen Species in Infection and Immunity
by Arunima Mukherjee, Krishna Kanta Ghosh, Sabyasachi Chakrabortty, Balázs Gulyás, Parasuraman Padmanabhan and Writoban Basu Ball
Biomolecules 2024, 14(6), 670; https://doi.org/10.3390/biom14060670 - 8 Jun 2024
Viewed by 371
Abstract
Reactive oxygen species (ROS) contain at least one oxygen atom and one or more unpaired electrons and include singlet oxygen, superoxide anion radical, hydroxyl radical, hydroperoxyl radical, and free nitrogen radicals. Intracellular ROS can be formed as a consequence of several factors, including [...] Read more.
Reactive oxygen species (ROS) contain at least one oxygen atom and one or more unpaired electrons and include singlet oxygen, superoxide anion radical, hydroxyl radical, hydroperoxyl radical, and free nitrogen radicals. Intracellular ROS can be formed as a consequence of several factors, including ultra-violet (UV) radiation, electron leakage during aerobic respiration, inflammatory responses mediated by macrophages, and other external stimuli or stress. The enhanced production of ROS is termed oxidative stress and this leads to cellular damage, such as protein carbonylation, lipid peroxidation, deoxyribonucleic acid (DNA) damage, and base modifications. This damage may manifest in various pathological states, including ageing, cancer, neurological diseases, and metabolic disorders like diabetes. On the other hand, the optimum levels of ROS have been implicated in the regulation of many important physiological processes. For example, the ROS generated in the mitochondria (mitochondrial ROS or mt-ROS), as a byproduct of the electron transport chain (ETC), participate in a plethora of physiological functions, which include ageing, cell growth, cell proliferation, and immune response and regulation. In this current review, we will focus on the mechanisms by which mt-ROS regulate different pathways of host immune responses in the context of infection by bacteria, protozoan parasites, viruses, and fungi. We will also discuss how these pathogens, in turn, modulate mt-ROS to evade host immunity. We will conclude by briefly giving an overview of the potential therapeutic approaches involving mt-ROS in infectious diseases. Full article
(This article belongs to the Special Issue Mitochondrial ROS in Health and Disease)
18 pages, 363 KiB  
Review
Molecular Genetics of Acquired Temporal Lobe Epilepsy
by Anne-Marie Neumann and Stefan Britsch
Biomolecules 2024, 14(6), 669; https://doi.org/10.3390/biom14060669 - 7 Jun 2024
Viewed by 304
Abstract
An epilepsy diagnosis reduces a patient’s quality of life tremendously, and it is a fate shared by over 50 million people worldwide. Temporal lobe epilepsy (TLE) is largely considered a nongenetic or acquired form of epilepsy that develops in consequence of neuronal trauma [...] Read more.
An epilepsy diagnosis reduces a patient’s quality of life tremendously, and it is a fate shared by over 50 million people worldwide. Temporal lobe epilepsy (TLE) is largely considered a nongenetic or acquired form of epilepsy that develops in consequence of neuronal trauma by injury, malformations, inflammation, or a prolonged (febrile) seizure. Although extensive research has been conducted to understand the process of epileptogenesis, a therapeutic approach to stop its manifestation or to reliably cure the disease has yet to be developed. In this review, we briefly summarize the current literature predominately based on data from excitotoxic rodent models on the cellular events proposed to drive epileptogenesis and thoroughly discuss the major molecular pathways involved, with a focus on neurogenesis-related processes and transcription factors. Furthermore, recent investigations emphasized the role of the genetic background for the acquisition of epilepsy, including variants of neurodevelopmental genes. Mutations in associated transcription factors may have the potential to innately increase the vulnerability of the hippocampus to develop epilepsy following an injury—an emerging perspective on the epileptogenic process in acquired forms of epilepsy. Full article
17 pages, 4341 KiB  
Review
Unveiling the Druggable Landscape of Bacterial Peptidyl tRNA Hydrolase: Insights into Structure, Function, and Therapeutic Potential
by Surbhi Mundra and Ashish Kabra
Biomolecules 2024, 14(6), 668; https://doi.org/10.3390/biom14060668 - 7 Jun 2024
Viewed by 400
Abstract
Bacterial peptidyl tRNA hydrolase (Pth) or Pth1 emerges as a pivotal enzyme involved in the maintenance of cellular homeostasis by catalyzing the release of peptidyl moieties from peptidyl-tRNA molecules and the maintenance of a free pool of specific tRNAs. This enzyme is vital [...] Read more.
Bacterial peptidyl tRNA hydrolase (Pth) or Pth1 emerges as a pivotal enzyme involved in the maintenance of cellular homeostasis by catalyzing the release of peptidyl moieties from peptidyl-tRNA molecules and the maintenance of a free pool of specific tRNAs. This enzyme is vital for bacterial cells and an emerging drug target for various bacterial infections. Understanding the enzymatic mechanisms and structural intricacies of bacterial Pth is pivotal in designing novel therapeutics to combat antibiotic resistance. This review provides a comprehensive analysis of the multifaceted roles of Pth in bacterial physiology, shedding light on its significance as a potential drug target. This article delves into the diverse functions of Pth, encompassing its involvement in ribosome rescue, the maintenance of a free tRNA pool in bacterial systems, the regulation of translation fidelity, and stress response pathways within bacterial systems. Moreover, it also explores the druggability of bacterial Pth, emphasizing its promise as a target for antibacterial agents and highlighting the challenges associated with developing specific inhibitors against this enzyme. Structural elucidation represents a cornerstone in unraveling the catalytic mechanisms and substrate recognition of Pth. This review encapsulates the current structural insights of Pth garnered through various biophysical techniques, such as X-ray crystallography and NMR spectroscopy, providing a detailed understanding of the enzyme’s architecture and conformational dynamics. Additionally, biophysical aspects, including its interaction with ligands, inhibitors, and substrates, are discussed, elucidating the molecular basis of bacterial Pth’s function and its potential use in drug design strategies. Through this review article, we aim to put together all the available information on bacterial Pth and emphasize its potential in advancing innovative therapeutic interventions and combating bacterial infections. Full article
(This article belongs to the Special Issue The Structure and Function of Proteins, Lipids and Nucleic Acids)
Show Figures

Figure 1

16 pages, 850 KiB  
Review
Advances in the Pathogenesis of Steroid-Associated Osteonecrosis of the Femoral Head
by Jie Zhang, Jianze Cao, Yongfei Liu and Haiyan Zhao
Biomolecules 2024, 14(6), 667; https://doi.org/10.3390/biom14060667 - 6 Jun 2024
Viewed by 407
Abstract
Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic condition characterized by bone cell ischemia, necrosis, bone trabecular fracture, and clinical symptoms such as pain, femoral head collapse, and joint dysfunction that can lead to disability. The disability rate of ONFH is [...] Read more.
Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic condition characterized by bone cell ischemia, necrosis, bone trabecular fracture, and clinical symptoms such as pain, femoral head collapse, and joint dysfunction that can lead to disability. The disability rate of ONFH is very high, which imposes a significant economic burden on both families and society. Steroid-associated osteonecrosis of the femoral head (SANFH) is the most common type of ONFH. However, the pathogenesis of SANFH remains unclear, and it is an urgent challenge for orthopedic surgeons to explore it. In this paper, the pathogenesis of SANFH and its related signaling pathways were briefly reviewed to enhance comprehension of the pathogenesis and prevention of SANFH. Full article
Show Figures

Figure 1

15 pages, 4586 KiB  
Article
Combination of Hydrolysable Tannins and Zinc Oxide on Enterocyte Functionality: In Vitro Insights
by Francesca Ciaramellano, Lucia Scipioni, Benedetta Belà, Giulia Pignataro, Giacomo Giacovazzo, Clotilde Beatrice Angelucci, Roberto Giacominelli-Stuffler, Alessandro Gramenzi and Sergio Oddi
Biomolecules 2024, 14(6), 666; https://doi.org/10.3390/biom14060666 - 6 Jun 2024
Viewed by 310
Abstract
The management of gastrointestinal disease in animals represents a significant challenge in veterinary and zootechnic practice. Traditionally, acute symptoms have been treated with antibiotics and high doses of zinc oxide (ZnO). However, concerns have been raised regarding the potential for microbial resistance and [...] Read more.
The management of gastrointestinal disease in animals represents a significant challenge in veterinary and zootechnic practice. Traditionally, acute symptoms have been treated with antibiotics and high doses of zinc oxide (ZnO). However, concerns have been raised regarding the potential for microbial resistance and ecological detriment due to the excessive application of this compound. These concerns highlight the urgency of minimizing the use of ZnO and exploring sustainable nutritional solutions. Hydrolysable tannins (HTs), which are known for their role in traditional medicine for acute gastrointestinal issues, have emerged as a promising alternative. This study examined the combined effect of food-grade HTs and subtherapeutic ZnO concentration on relevant biological functions of Caco-2 cells, a widely used model of the intestinal epithelial barrier. We found that, when used together, ZnO and HTs (ZnO/HTs) enhanced tissue repair and improved epithelial barrier function, normalizing the expression and functional organization of tight junction proteins. Finally, the ZnO/HTs combination strengthened enterocytes’ defense against oxidative stress induced by inflammation stimuli. In conclusion, combining ZnO and HTs may offer a suitable and practical approach for decreasing ZnO levels in veterinary nutritional applications. Full article
Show Figures

Figure 1

11 pages, 1495 KiB  
Article
Effect of Acute Nutritional Ketosis on Circulating Levels of Growth Differentiation Factor 15: Findings from a Cross-Over Randomised Controlled Trial
by Sanjali Charles, Yutong Liu, Sakina H. Bharmal, Wandia Kimita and Maxim S. Petrov
Biomolecules 2024, 14(6), 665; https://doi.org/10.3390/biom14060665 - 6 Jun 2024
Viewed by 302
Abstract
Exogenous supplementation with ketone beverages has been shown to reduce plasma glucose levels during acute nutritional ketosis. It remains to be investigated whether growth differentiation factor 15 (GDF-15)—an anorexigenic hormone—is involved in this process. The aim was to investigate the effect of a [...] Read more.
Exogenous supplementation with ketone beverages has been shown to reduce plasma glucose levels during acute nutritional ketosis. It remains to be investigated whether growth differentiation factor 15 (GDF-15)—an anorexigenic hormone—is involved in this process. The aim was to investigate the effect of a ketone ester beverage delivering β-hydroxybutyrate (KEβHB) on plasma levels of GDF-15, as well as assess the influence of eating behaviour on it. The study was a randomised controlled trial (registered at clinicaltrials.gov as NCT03889210). Individuals were given a KEβHB beverage or placebo in a cross-over fashion. Blood samples were collected at baseline, 30, 60, 90, 120, and 150 min after ingestion. Eating behaviour was assessed using the three-factor eating questionnaire. GDF-15 levels were not significantly different (p = 0.503) after the KEβHB beverage compared with the placebo. This finding remained consistent across the cognitive restraint, emotional eating, and uncontrolled eating domains. Changes in the anorexigenic hormone GDF-15, irrespective of eating behaviour, do not appear to play a major role in the glucose-lowering effect of exogenous ketones. Full article
Show Figures

Figure 1

14 pages, 1672 KiB  
Article
Tetranuclear Polypyridylruthenium(II) Complexes as Selective Nucleic Acid Stains for Flow Cytometric Analysis of Monocytic and Epithelial Lung Carcinoma Large Extracellular Vesicles
by Kartika Wardhani, Aviva Levina, Biyun Sun, Haipei Zou, Georges E. R. Grau, F. Richard Keene, J. Grant Collins and Peter A. Lay
Biomolecules 2024, 14(6), 664; https://doi.org/10.3390/biom14060664 - 6 Jun 2024
Viewed by 359
Abstract
Selective staining of extracellular vesicles (EVs) is a major challenge for diagnostic and therapeutic applications. Herein, the EV labeling properties of a new class of tetranuclear polypyridylruthenium(II) complexes, Rubb7-TNL and Rubb7-TL, as phosphorescent stains are described. These new stains [...] Read more.
Selective staining of extracellular vesicles (EVs) is a major challenge for diagnostic and therapeutic applications. Herein, the EV labeling properties of a new class of tetranuclear polypyridylruthenium(II) complexes, Rubb7-TNL and Rubb7-TL, as phosphorescent stains are described. These new stains have many advantages over standard stains to detect and characterize EVs, including: high specificity for EV staining versus cell staining; high phosphorescence yields; photostability; and a lack of leaching from EVs until incorporation with target cells. As an example of their utility, large EVs released from control (basal) or lipopolysaccharide (LPS)-stimulated THP-1 monocytic leukemia cells were studied as a model of immune system EVs released during bacterial infection. Key findings from EV staining combined with flow cytometry were as follows: (i) LPS-stimulated THP-1 cells generated significantly larger and more numerous large EVs, as compared with those from unstimulated cells; (ii) EVs retained native EV physical properties after staining; and (iii) the new stains selectively differentiated intact large EVs from artificial liposomes, which are models of cell membrane fragments or other lipid-containing debris, as well as distinguished two distinct subpopulations of monocytic EVs within the same experiment, as a result of biochemical differences between unstimulated and LPS-stimulated monocytes. Comparatively, the staining patterns of A549 epithelial lung carcinoma-derived EVs closely resembled those of THP-1 cell line-derived EVs, which highlighted similarities in their selective staining despite their distinct cellular origins. This is consistent with the hypothesis that these new phosphorescent stains target RNA within the EVs. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Graphical abstract

18 pages, 3244 KiB  
Article
Extracellular Self-DNA Effects on Yeast Cell Cycle and Transcriptome during Batch Growth
by Emanuela Palomba, Maria Luisa Chiusano, Francesco Monticolo, Maria Chiara Langella, Massimo Sanchez, Valentina Tirelli, Elisabetta de Alteriis, Marco Iannaccone, Pasquale Termolino, Rosanna Capparelli, Fabrizio Carteni, Guido Incerti and Stefano Mazzoleni
Biomolecules 2024, 14(6), 663; https://doi.org/10.3390/biom14060663 - 6 Jun 2024
Viewed by 336
Abstract
The cell cycle and the transcriptome dynamics of yeast exposed to extracellular self-DNA during an aerobic batch culture on glucose have been investigated using cytofluorimetric and RNA-seq analyses. In parallel, the same study was conducted on yeast cells growing in the presence of [...] Read more.
The cell cycle and the transcriptome dynamics of yeast exposed to extracellular self-DNA during an aerobic batch culture on glucose have been investigated using cytofluorimetric and RNA-seq analyses. In parallel, the same study was conducted on yeast cells growing in the presence of (heterologous) nonself-DNA. The self-DNA treatment determined a reduction in the growth rate and a major elongation of the diauxic lag phase, as well as a significant delay in the achievement of the stationary phase. This was associated with significant changes in the cell cycle dynamics, with slower exit from the G0 phase, followed by an increased level of cell percentage in the S phase, during the cultivation. Comparatively, the exposure to heterologous DNA did not affect the growth curve and the cell cycle dynamics. The transcriptomic analysis showed that self-DNA exposure produced a generalized downregulation of transmembrane transport and an upregulation of genes associated with sulfur compounds and the pentose phosphate pathway. Instead, in the case of the nonself treatment, a clear response to nutrient deprivation was detected. Overall, the presented findings represent further insights into the complex functional mechanisms of self-DNA inhibition. Full article
(This article belongs to the Special Issue Recent Developments in the Biology of Extracellular or Cell-Free DNA)
Show Figures

Figure 1

18 pages, 1681 KiB  
Article
Smoking-Induced DNA Hydroxymethylation Signature Is Less Pronounced than True DNA Methylation: The Population-Based KORA Fit Cohort
by Liye Lai, Pamela R. Matías-García, Anja Kretschmer, Christian Gieger, Rory Wilson, Jakob Linseisen, Annette Peters and Melanie Waldenberger
Biomolecules 2024, 14(6), 662; https://doi.org/10.3390/biom14060662 - 5 Jun 2024
Viewed by 383
Abstract
Despite extensive research on 5-methylcytosine (5mC) in relation to smoking, there has been limited exploration into the interaction between smoking and 5-hydroxymethylcytosine (5hmC). In this study, total DNA methylation (5mC+5hmC), true DNA methylation (5mC) and hydroxymethylation (5hmC) levels were profiled utilizing conventional bisulphite [...] Read more.
Despite extensive research on 5-methylcytosine (5mC) in relation to smoking, there has been limited exploration into the interaction between smoking and 5-hydroxymethylcytosine (5hmC). In this study, total DNA methylation (5mC+5hmC), true DNA methylation (5mC) and hydroxymethylation (5hmC) levels were profiled utilizing conventional bisulphite (BS) and oxidative bisulphite (oxBS) treatment, measured with the Illumina Infinium MethylationEPIC BeadChip. An epigenome-wide association study (EWAS) of 5mC+5hmC methylation revealed a total of 38,575 differentially methylated positions (DMPs) and 2023 differentially methylated regions (DMRs) associated with current smoking, along with 82 DMPs and 76 DMRs associated with former smoking (FDR-adjusted p < 0.05). Additionally, a focused examination of 5mC identified 33 DMPs linked to current smoking and 1 DMP associated with former smoking (FDR-adjusted p < 0.05). In the 5hmC category, eight DMPs related to current smoking and two DMPs tied to former smoking were identified, each meeting a suggestive threshold (p < 1 × 10−5). The substantial number of recognized DMPs, including 5mC+5hmC (7069/38,575, 2/82), 5mC (0/33, 1/1), and 5hmC (2/8, 0/2), have not been previously reported. Our findings corroborated previously established methylation positions and revealed novel candidates linked to tobacco smoking. Moreover, the identification of hydroxymethylated CpG sites with suggestive links provides avenues for future research. Full article
(This article belongs to the Special Issue DNA Methylation in Human Diseases)
Previous Issue
Back to TopTop