Next Issue
Previous Issue

Table of Contents

Electronics, Volume 1, Issue 2 (December 2012), Pages 32-46

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-1
Export citation of selected articles as:

Research

Open AccessArticle Modified EAS Tag Used as a Resistive Sensor Platform
Electronics 2012, 1(2), 32-46; doi:10.3390/electronics1020032
Received: 6 September 2012 / Revised: 30 October 2012 / Accepted: 30 October 2012 / Published: 9 November 2012
Cited by 1 | PDF Full-text (2241 KB) | HTML Full-text | XML Full-text
Abstract
In this article, a modified design of an RF Radio Frequency Electronic Article Surveillance (EAS) tag, used as a sensor platform, is manufactured and characterized. EAS tags are passive devices consisting of a capacitor and coil, tuned to a resonance frequency readable by
[...] Read more.
In this article, a modified design of an RF Radio Frequency Electronic Article Surveillance (EAS) tag, used as a sensor platform, is manufactured and characterized. EAS tags are passive devices consisting of a capacitor and coil, tuned to a resonance frequency readable by the detector equipment, in this case 8.2 MHz. They were originally used to detect whether merchandise was being moved through the detection gates at shop exits, in which case an alarm was triggered. If the capacitance is divided in two and a resistive sensor device inserted in between, the resonant Inductor-Capacitor (LC) circuit becomes an Inductor-Capacitor-Capacitor-Resistor LCCR circuit and can be used as a sensor tag. A high sensor resistance means that one capacitor is decoupled, leading to one resonance frequency, while a low resistance will couple both capacitances into the circuit, resulting in a lower resonance frequency. Different types of resistive sensors exist that are able to detect properties such as pressure, moisture, light and temperature. The tag is manufactured in Aluminum foil on a polyetylentereftalat (PET) substrate, resulting in a cost effective RF-platform for various resistive sensors. Two types of tags are designed and manufactured, one with parallel plate capacitors and the other with interdigital capacitors. To test the tags, a resistive tilt sensor is mounted and the tags are characterized using a network analyzer. It is shown that for high resistance, the tags have a resonance frequency of morethan 10 MHz while for low values the frequency approaches 8.2 MHz. Full article
(This article belongs to the Special Issue Feature Papers)

Journal Contact

MDPI AG
Electronics Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
electronics@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Electronics
Back to Top