Dynamism of Stimuli-Responsive Nanohybrids: Environmental Implications
Abstract
:1. Introduction
2. Principle for Discerning ANHs
3. Classification of ANHs
3.1. pH-Responsive
3.2. Thermo-Responsive
3.3. Photo-Responsive
3.4. Multi-, Bio- and Other-Stimuli Responsive Nano-Systems
4. EHS Implications
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Roco, M.C. The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years. J. Nanopart. Res. 2011, 13, 427–445. [Google Scholar] [CrossRef]
- Aich, N.; Plazas-Tuttle, J.; Lead, J.R.; Saleh, N.B. A critical review of nanohybrids: Synthesis, applications and environmental implications. Environ. Chem. 2014, 11, 609–623. [Google Scholar] [CrossRef]
- Wei, G.; Keller, T.F.; Zhang, J.; Jandt, K.D. Novel 1-D biophotonic nanohybrids: Protein nanofibers meet quantum dots. Soft Matter 2011, 7, 2011–2018. [Google Scholar] [CrossRef]
- Prakash, S.; Malhotra, M.; Shao, W.; Tomaro-Duchesneau, C.; Abbasi, S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv. Drug Deliv. Rev. 2011, 63, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Ipe, B.I.; Niemeyer, C.M. Nanohybrids Composed of Quantum Dots and Cytochrome P450 as Photocatalysts. Angew. Chem. Int. Ed. 2006, 45, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Li, H.-N.; Wu, J.; Ju, C.; Yan, J.-J.; Liu, Q.; Qiu, B. TiO2-decorated graphene nanohybrids for fabricating an amperometric acetylcholinesterase biosensor. Analyst 2011, 136, 3349–3354. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.-M.; Guo, Z.; Du, F.; Liu, Z.-F.; Zhou, Z.-C.; Shi, X.-Y.; Chen, Y.-S.; Zheng, J.-Y. A Novel Soluble Tin(IV) Porphyrin Modified Single-Walled Carbon Nanotube Nanohybrid With Light Harvesting Properties. Int. J. Mol. Sci. 2008, 9, 1–11. [Google Scholar] [CrossRef]
- Si, H.-Y.; Liu, C.-H.; Xu, H.; Wang, T.-M.; Zhang, H.-L. Shell-Controlled Photoluminescence in CdSe/CNT Nanohybrids. Nanoscale Res. Lett. 2009, 4, 1146–1152. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Goudar, V.S.; Padmalekha, K.G.; Bhat, S.V.; Indi, S.S.; Vasan, H.N. ZnO/Ag nanohybrid: Synthesis, characterization, synergistic antibacterial activity and its mechanism. RSC Adv. 2012, 2, 930–940. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, Z.; Ma, J.; Yang, M.; Hong, J.; Hu, X.; Qiu, Y.; Chen, J. One-Pot, solid-phase synthesis of magnetic multiwalled carbon nanotube/iron oxide composites and their application in arsenic removal. J. Colloid Interface Sci. 2014, 434, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-J.; Zhao, G.-Z.; Jiang, B.; Sun, B.; Wang, M.; Xu, L.; He, J.; Abliz, Z.; Tan, H.; Li, X.; Yang, H.-B. Smart stimuli-responsive spherical nanostructures constructed from supramolecular metallodendrimers via hierarchical self-assembly. J. Am. Chem. Soc. 2014, 136, 5993–6001. [Google Scholar] [CrossRef] [PubMed]
- Pennakalathil, J.; Özgün, A.; Durmaz, I.; Cetin-Atalay, R.; Tuncel, D. pH-responsive near-infrared emitting conjugated polymer nanoparticles for cellular imaging and controlled-drug delivery. J. Polym. Sci. A 2014, 53, 114–122. [Google Scholar] [CrossRef]
- Shim, M.S.; Kwon, Y.J. Stimuli-Responsive polymers and nanomaterials for gene delivery and imaging applications. Adv. Drug Deliv. Rev. 2012, 64, 1046–1059. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.; Devi, K.S.P.; Banerjee, R.; Maiti, T.K.; Pramanik, P.; Dhara, D. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl. Mater. Interfaces 2013, 5, 3884–3893. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Boyer, J.-C.C.; Barker, M.; Wilson, D.; Branda, N.R. A “plug-and-play” method to prepare water-soluble photoresponsive encapsulated upconverting nanoparticles containing hydrophobic molecular switches. Chem. Mater. 2013, 25, 2495–2502. [Google Scholar] [CrossRef]
- Tokarev, I.; Minko, S. Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers. Soft Matter 2012, 8, 5980–5987. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Tang, X.; Luo, Y.; Zeng, Q.; Deng, X.; Ding, S.; Sun, Y. Gold nanoparticles embedded in Ta2O5/Ta3N5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution. J. Mater. Chem. A 2014, 2, 14927–14939. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Y.-X.; Zhang, W.-D. Photoelectrochemical study on charge transfer properties of nanostructured Fe2O3 modified by g-C3N4. Int. J. Hydrog. Energy 2014, 39, 9105–9113. [Google Scholar] [CrossRef]
- Saleh, N.B.; Afrooz, A.; Bisesi, J., Jr.; Aich, N.; Plazas-Tuttle, J.; Sabo-Attwood, T. Emergent properties and toxicological considerations for nanohybrid materials in aquatic systems. Nanomaterials 2014, 4, 372–407. [Google Scholar] [CrossRef]
- Saleh, N.B.; Aich, N.; Plazas-Tuttle, J.; Lead, J.R.; Lowry, G.V. Research strategy to determine when novel nanohybrids pose unique environmental risks. Environ. Sci. Nano 2015, 2, 11–18. [Google Scholar] [CrossRef]
- Motornov, M.; Roiter, Y.; Tokarev, I.; Minko, S. Stimuli-Responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog. Polym. Sci. 2010, 35, 174–211. [Google Scholar] [CrossRef]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Stefaniu, C.; Chanana, M.; Wang, D.; Brezesinski, G.; Möhwald, H. Stimuli-responsive magnetite nanoparticle monolayers. J. Phys. Chem. C 2011, 115, 5478–5484. [Google Scholar] [CrossRef]
- Kulkarni, S.A.; Lyles, V.D.; Serem, W.K.; Lu, L.; Kumar, R.; Garno, J.C. Solvent-responsive properties of octadecyltrichlorosiloxane nanostructures investigated using atomic force microscopy in liquid. Langmuir 2014, 30, 5466–5473. [Google Scholar] [CrossRef] [PubMed]
- Lapresta-Fernández, A.; García-García, J.M.; París, R.; Huertas-Roa, R.; Salinas-Castillo, A.; de la Llana, S.A.; Huertas-Pérez, J.F.; Guarrotxena, N.; Capitán-Vallvey, L.F.; Quijada-Garrido, I. Thermoresponsive gold polymer nanohybrids with a tunable cross-linked MEO 2MA polymer shell. Part. Part. Syst. Charact. 2014, 31, 1183–1191. [Google Scholar] [CrossRef]
- Zimny, K.; Mascaro, B.; Brunet, T.; Poncelet, O.; Aristégui, C.; Leng, J.; Sandre, O.; Mondain-Monval, O. Design of a fluorinated magneto-responsive material with tuneable ultrasound scattering properties. J. Mater. Chem. B 2014, 2, 1285–1297. [Google Scholar] [CrossRef]
- Mimura, K.; Yogo, T. Field-Responsive BaTiO3 nanoparticle/organic hybrid synthesized from metal alkoxide. J. Ceramic Soc. Jpn. 2011, 119, 776–782. [Google Scholar] [CrossRef]
- Wu, T.; Wilson, D.; Branda, N.R. Fluorescent quenching of lanthanide-doped upconverting nanoparticles by photoresponsive polymer shells. Chem. Mater. 2014, 26, 4313–4320. [Google Scholar] [CrossRef]
- Miura, R.; Ando, Y.; Hotta, Y.; Nagatani, Y.; Tsuda, A. Acoustic alignment of a supramolecular nanofiber in harmony with the sound of music. ChemPlusChem 2014, 79, 516–523. [Google Scholar] [CrossRef]
- Yerushalmi, R.; Scherz, A.; van der Boom, M.E.; Kraatz, H.-B. Stimuli responsive materials: New avenues toward smart organic devices. J. Mater. Chem. 2005, 15, 4480–4487. [Google Scholar] [CrossRef]
- Alvarez-Lorenzo, C.; Guney, O.; Oya, T.; Sakai, Y.; Kobayashi, M.; Enoki, T.; Takeoka, Y.; Ishibashi, T.; Kuroda, K.; Tanaka, K.; et al. Reversible adsorption of calcium ions by imprinted temperature sensitive gels. J. Chem. Phys. 2001, 114, 2812–2816. [Google Scholar] [CrossRef]
- Hariharasubramanian, A.; Ravichandran, Y.D.; Rajesh, R.; Rajkumari, R.; Selvan, G.K.; Arumugam, S. Functionalization of multi-walled carbon nanotubes with 6-aminobenzothiazole and their temperature-dependent magnetic studies. Fuller. Nanotub. Carbon Nanostruct. 2014, 22, 874–886. [Google Scholar] [CrossRef]
- Fang, W.; Yang, J.; Gong, J.; Zheng, N. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv. Funct. Mater. 2011, 22, 842–848. [Google Scholar] [CrossRef]
- Li, Q.; He, X.; Cui, Y.; Shi, P.; Li, S.; Zhang, W. Doubly thermo-responsive nanoparticles constructed with two diblock copolymers prepared through the two macro-RAFT agents co-mediated dispersion RAFT polymerization. Polym. Chem. 2015, 6, 70–78. [Google Scholar] [CrossRef]
- He, T.; di Lena, F.; Neo, K.C.; Chai, C.L.L. Direct synthesis of pH-responsive polymer nanoparticles based on living radical polymerization and traditional radical polymerization. Soft Matter 2011, 7, 3358–3365. [Google Scholar] [CrossRef]
- Cammas, S.; Suzuki, K.; Sone, C.; Sakurai, Y. Thermo-Responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J. Controll. Release 1997, 48, 157–164. [Google Scholar] [CrossRef]
- Tedja, R.; Marquis, C.; Lim, M.; Amal, R. Biological impacts of TiO2 on human lung cell lines A549 and H1299: Particle size distribution effects. J. Nanopart. Res. 2011, 13, 3801–3813. [Google Scholar] [CrossRef]
- Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Nel, A.; Zhao, Y.; Mädler, L. Environmental health and safety considerations for nanotechnology. Acc. Chem. Res. 2013, 46, 605–606. [Google Scholar] [CrossRef] [PubMed]
- Klaine, S.J.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2009, 27, 1825–1851. [Google Scholar] [CrossRef]
- Lowry, G.V.; Gregory, K.B.; Apte, S.C.; Lead, J.R. Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893–6899. [Google Scholar] [CrossRef] [PubMed]
- Sanpui, P.; Zheng, X.; Loeb, J.C.; Bisesi, J.H., Jr.; Khan, I.A.; Afrooz, A.R.M.N.; Liu, K.; Badireddy, A.; Wiesner, M.R.; Ferguson, P.; et al. Single-walled carbon nanotubes increase pandemic influenza A H1N1 virus infectivity of lung epithelial cells. Part. Fibre Toxicol. 2014, 11. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Legros, S.; Ma, G.; Veinot, J.G.C.; von der Kammer, F.; Hofmann, T. Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles. Chemosphere 2012, 87, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Diegoli, S.; Manciulea, A.L.; Begum, S.; Jones, I.P.; Lead, J.R.; Preece, J.A. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci. Total Environ. 2008, 402, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Saha, K.; Kim, C.; Rotello, V.M. The role of surface functionality in determining nanoparticle cytotoxicity. Acc. Chem. Res. 2013, 46, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Liu, Y.; Wang, L.; Xu, L.; Bai, R.; Ji, Y.; Wu, X.; Zhao, Y.; Li, Y.; Chen, C. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 2010, 31, 7606–7619. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, W.; Han, C.; Zhang, S.; Zhou, H.; Guo, J. Aggregation behavior of pH- and thermo-responsive block copolymer protected gold nanoparticles. Colloid Polym. Sci. 2014, 292, 1657–1664. [Google Scholar] [CrossRef]
- Li, C.; Bolisetty, S.; Chaitanya, K.; Adamcik, J.; Mezzenga, R. Tunable Carbon Nanotube/Protein Core-Shell Nanoparticles with NIR- and Enzymatic-Responsive Cytotoxicity. Adv. Mater. 2012, 25, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hu, K.; Cao, W.; Sun, Y.; Sheng, W.; Li, F.; Wu, Y.; Liang, X.-J. pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery. Nanoscale 2014, 6, 13701–13709. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, N.; Wu, J.; Ye, Q.; Zhang, C.; Xing, X.-H.; Yuan, J. Hybrid nanoparticles with CO2-responsive shells and fluorescence-labelled magnetic cores. J. Mater. Chem. B 2013, 2, 437–442. [Google Scholar] [CrossRef]
- Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Thermosensitive core–shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks. Angew. Chem. Int. Ed. 2006, 45, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, X.; Zha, L.; Lin, D.; Yang, J.; Zhou, J.; Zhang, L. Temperature- and pH-tunable plasmonic properties and SERS efficiency of the silver nanoparticles within the dual stimuli-responsive microgels. J. Mater. Chem. C Mater. Opt. Electron. Dev. 2014, 2, 7326–7335. [Google Scholar] [CrossRef]
- Popat, A.; Liu, J.; Lu, G.Q.M.; Qiao, S.Z. A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J. Mater. Chem. 2012, 22, 11173–11178. [Google Scholar] [CrossRef]
- Lupitskyy, R.; Motornov, M.; Minko, S. Single nanoparticle plasmonic devices by the “grafting to” method. Langmuir 2008, 24, 8976–8980. [Google Scholar] [CrossRef] [PubMed]
- Liras, M.; Peinado, E.; Cañamero, P.; Quijada-Garrido, I.; García, O. Smart photoluminescent nanohybrids based on CdSe quantum dots capped with multidentate thiolated pH-responsive and thermoresponsive polymers for nanosensing. J. Polym. Sci. A 2014, 52, 3087–3095. [Google Scholar] [CrossRef]
- Ast, S.; Rutledge, P.J.; Todd, M.H. pH-Responsive quantum dots (RQDs) that combine a fluorescent nanoparticle with a pH-sensitive dye. Phys. Chem. Chem. Phys. 2014, 16, 25255–25257. [Google Scholar] [CrossRef] [PubMed]
- Iatridi, Z.; Tsitsilianis, C. pH responsive MWCNT—Star terpolymer nanohybrids. Soft Matter 2012, 9, 185–193. [Google Scholar] [CrossRef]
- Nadrah, P.; Porta, F.; Planinšek, O.; Kros, A.; Gaberšček, M. Poly(propylene imine) dendrimer caps on mesoporous silica nanoparticles for redox-responsive release: Smaller is better. Phys. Chem. Chem. Phys. 2013, 15, 10740–10748. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Dong, R.; Wang, S.; Zhang, Z.; Luo, M.; Bai, C.; Zhao, Q.; Li, J.; Chen, L.; Xiong, H. A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: Fabrication, characterization and properties for controlled release of salidroside. Int. J. Pharm. 2013, 446, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Ahmed, E.; Hong, Z.L.; Jiao, X.L.; Abbas, T.; Khalid, N.R. Enhancement in visible light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes. Appl. Surf. Sci. 2013, 285, 702–712. [Google Scholar] [CrossRef]
- Chen, J.-K.; Chang, C.-J. Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: A review. Materials 2014, 7, 805–875. [Google Scholar] [CrossRef]
- Shalviri, A.; Chan, H.K.; Raval, G.; Abdekhodaie, M.J.; Liu, Q.; Heerklotz, H.; Wu, X.Y. Design of pH-responsive nanoparticles of terpolymer of poly(methacrylic acid), polysorbate 80 and starch for delivery of doxorubicin. Colloids Surf. B 2013, 101, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yi, C.; Wei, W.; Zhao, D.; Hu, Q.; Liu, X. Nanohybrids from direct chemical self-assembly of poly(styrene-alt-maleic anhydride) as pH-responsive particulate emulsifiers. Langmuir 2014, 30, 14757–14764. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Peng, H.; Thurecht, K.J.; Puttick, S.; Whittaker, A.K. pH-Responsive star polymer nanoparticles: Potential 19F MRI contrast agents for tumour-selective imaging. Polym. Chem. 2013, 4, 4480–4410. [Google Scholar] [CrossRef]
- Li, D.; He, Q.; Cui, Y.; Li, J. Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine). Chem. Mater. 2007, 19, 412–417. [Google Scholar] [CrossRef]
- Miyata, T.; Onakamae, K.; Hoffman, A.S.; Kanzaki, Y. Stimuli-sensitivities of hydrogels containing phosphate groups. Macromol. Chem. Phys. 1994, 195, 1111–1120. [Google Scholar] [CrossRef]
- Lavignac, N.; Lazenby, M.; Foka, P.; Malgesini, B.; Verpilio, I.; Ferruti, P.; Duncan, R. Synthesis and endosomolytic properties of poly(amidoamine) block copolymers. Macromol. Biosci. 2004, 4, 922–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarn, D.; Ashley, C.E.; Xue, M.; Carnes, E.C.; Zink, J.I.; Brinker, C.J. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Acc. Chem. Res. 2013, 46, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Kotsuchibashi, Y.; Wang, Y.; Kim, Y.-J.; Ebara, M.; Aoyagi, T.; Narain, R. Simple coating with pH-responsive polymer-functionalized silica nanoparticles of mixed sizes for controlled surface properties. ACS Appl. Mater. Interfaces 2013, 5, 10004–10010. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2001, 53, 321–339. [Google Scholar] [CrossRef]
- Chiantore, O.; Guaita, M.; Trossarelli, L. Solution properties of poly (N-isopropylacrylamide). Makromol. Chemie 1979, 180, 969–973. [Google Scholar] [CrossRef]
- Murray, M.; Rana, F.; Haq, I.; Cook, J.; Chowdhry, B.Z.; Snowden, M.J. Colloidal microgel systems: Phase transition properties in aqueous solution of poly(N-isopropylacrylamide). J. Chem. Soc. Chem. Commun. 1994, 15. [Google Scholar] [CrossRef]
- Mikheeva, L.M.; Grinberg, N.V.; Mashkevich, A.Y.; Grinberg, V.Y.; Thanh, L.T.M.; Makhaeva, E.E.; Khokhlov, A.R. Microcalorimetric study of thermal cooperative transitions in poly(N-vinylcaprolactam) hydrogels. Macromolecules 1997, 30, 2693–2699. [Google Scholar] [CrossRef]
- Popescu, I.; Prisacaru, A.I.; Suflet, D.M.; Fundueanu, G. Thermo- and pH-sensitivity of poly(N-vinylcaprolactam-co-maleic acid) in aqueous solution. Polym. Bull. 2014, 71, 2863–2880. [Google Scholar] [CrossRef]
- Schild, H.G. Poly(N-isopropylacrylamide): Experiment, theory and application. Progress Polym. Sci. 1992, 17, 163–249. [Google Scholar] [CrossRef]
- Carregal-Romero, S.; Buurma, N.J.; Pérez-Juste, J.; Liz-Marzán, L.M.; Hervés, P. Catalysis by Au@pNIPAM nanocomposites: Effect of the cross-linking density. Chem. Mater. 2010, 22, 3051–3059. [Google Scholar] [CrossRef]
- Lee, R.-S.; Wang, S.-W.; Li, Y.-C.; Fang, J.-Y. Synthesis and characterization of thermo-responsive and photo-cleavable block copolymers as nanocarriers. RSC Adv. 2014, 5, 497–512. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Z.; Chen, C.; Allcock, H.R. UV-cleavable unimolecular micelles: Synthesis and characterization toward photocontrolled drug release carriers. Polym. Chem. 2013, 4, 1115–1125. [Google Scholar] [CrossRef]
- Apostol, M.; Mironava, T.; Yang, N.-L.; Pernodet, N.; Rafailovich, M.H. Cell sheet patterning using photo-cleavable polymers. Polym. J. 2011, 43, 723–732. [Google Scholar] [CrossRef]
- Vivero-Escoto, J.L.; Vega, D.L. Stimuli-responsive protoporphyrin IX silica-based nanoparticles for photodynamic therapy in vitro. RSC Adv. 2014, 4, 14400–14407. [Google Scholar] [CrossRef]
- Feng, W.; Luo, W.; Feng, Y. Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: Structures, properties and application. Nanoscale 2012, 4, 6118–6134. [Google Scholar] [CrossRef] [PubMed]
- Bobrovsky, A.; Shibaev, V.; Cigl, M.; Hamplová, V.; Hampl, F.; Elyashevitch, G. Photochromic LC–polymer composites containing azobenzene chromophores with thermally stable Z-isomers. J. Mater. Chem. C 2014, 2, 4482–4488. [Google Scholar] [CrossRef]
- Shinmori, H.; Takeuchi, M.; Shinkai, S. Spectroscopic detection of diols and sugars by a colour change in boronic acid-appended spirobenzopyrans. J. Chem. Soc. Perkin Trans. 2 1996, 1. [Google Scholar] [CrossRef]
- Sidhaye, D.S.; Kashyap, S.; Sastry, M.; Hotha, S.; Prasad, B.L. Gold nanoparticle networks with photoresponsive interparticle spacings. Langmuir 2005, 21, 7979–7984. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhou, Q.; Sun, J.; Jiang, J.; Zhou, X.; Zhang, H.; Liu, X. Photoresponsive water-dispersible polyaniline nanoparticles through template synthesis with copolymer micelle containing coumarin groups. J. Polym. Sci. A 2012, 50, 4037–4045. [Google Scholar] [CrossRef]
- Takenaka, T.; Endo, M.; Suzuki, Y.; Yang, Y.; Emura, T.; Hidaka, K.; Kato, T.; Miyata, T.; Namba, K.; Sugiyama, H. Photoresponsive DNA nanocapsule having an open/close system for capture and release of nanomaterials. Chem. Eur. J. 2014, 20, 14951–14954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentini, L.; Cardinali, M.; Kenny, J.M.; Prato, M.; Monticelli, O. A photoresponsive hybrid nanomaterial based on graphene and polyhedral oligomeric silsesquioxanes. Eur. J. Inorg. Chem. 2012, 2012, 5282–5287. [Google Scholar] [CrossRef]
- Meng, F.; Hennink, W.E.; Zhong, Z. Reduction-Sensitive polymers and bioconjugates for biomedical applications. Biomaterials 2009, 30, 2180–2198. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, X.; Chen, S.; You, Q.; He, R.; Shi, J.; Cao, Y.; Chen, Y. Multi-responsive drug release from hydrogen-bonding multilayers containing PEGylated nanoparticles and azobenzenes. J. Mater. Chem. B 2014, 2, 4422–4425. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, G.; Li, X.; Wang, Y.; Gao, H.; Ma, J. On–off switchable drug release from multi-responsive degradable poly(ether urethane) nanoparticles. Biomater. Sci. 2013, 1, 614–624. [Google Scholar] [CrossRef]
- Chang, B.; Sha, X.; Guo, J.; Jiao, Y.; Wang, C.; Yang, W. Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J. Mater. Chem. 2011, 21, 9239–9247. [Google Scholar] [CrossRef]
- Morones-Ramírez, J.R. Coupling metallic nanostructures to thermally responsive polymers allows the development of intelligent responsive membranes. Int. J. Polym. Sci. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Ma, R.; Shi, L. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: Synthesis and applications in drug delivery. Polym. Chem. 2014, 5, 1503–1518. [Google Scholar] [CrossRef]
- Wang, D.; Xu, Z.; Chen, Z.; Liu, X.; Hou, C.; Zhang, X.; Zhang, H. Fabrication of single-hole glutathione-responsive degradable hollow silica nanoparticles for drug delivery. ACS Appl. Mater. Interfaces 2014, 6, 12600–12608. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Katti, P.S.; Gu, Z. Enzyme-Responsive nanomaterials for controlled drug delivery. Nanoscale 2014, 6, 12273–12286. [Google Scholar] [CrossRef] [PubMed]
- Gliga, A.R.; Skoglund, S.; Wallinder, I.O.; Fadeel, B.; Karlsson, H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Part. Fibre. Toxicol. 2014, 11. [Google Scholar] [CrossRef] [PubMed]
- Afrooz, A.R.M.N.; Sivalapalan, S.T.; Murphy, C.J.; Hussain, S.M.; Schlager, J.J.; Saleh, N.B. Spheres vs. rods: The shape of gold nanoparticles influences aggregation and deposition behavior. Chemosphere 2013, 91, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.F.; Subr, V.; Ulbrich, K.; Decher, G. Multifunctional cytotoxic stealth nanoparticles. A model approach with potential for cancer therapy. Nano Lett. 2009, 9, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Ryman-Rasmussen, J.P.; Riviere, J.E.; Monteiro-Riviere, N.A. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J. Investig. Dermatol. 2006, 127, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Pakrashi, S.; Kumar, D.; Iswarya, V.; Bhuvaneshwari, M.; Chandrasekaran, N.; Mukherjee, A. A comparative ecotoxicity analysis of α- and γ-phase aluminium oxide nanoparticles towards a freshwater bacterial isolate Bacillus licheniformis. Bioprocess. Biosyst. Eng. 2014, 37, 2415–2423. [Google Scholar] [CrossRef] [PubMed]
- Chambers, B.A.; Afrooz, A.R.M.N.; Bae, S.; Aich, N.; Katz, L.; Saleh, N.B.; Kirisits, M.J. Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial Toxicity of silver nanoparticles. Environ. Sci. Technol. 2014, 48, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, G.; Su, C. Influence of collector surface composition and water chemistry on the deposition of cerium dioxide nanoparticles: QCM-D and column experiment approaches. Environ. Sci. Technol. 2012, 46, 6681–6688. [Google Scholar] [CrossRef] [PubMed]
- Afrooz, A.R.M.N.; Khan, I.A.; Hussain, S.M.; Saleh, N.B. Mechanistic heteroaggregation of gold nanoparticles in a wide range of solution chemistry. Environ. Sci. Technol. 2013, 47, 1853–1860. [Google Scholar] [CrossRef] [PubMed]
- Elimelech, M.; Jia, X.; Gregory, J.; Williams, R. Particle Deposition & Aggregation; Butterworth-Heinemann: Oxford, UK, 1998. [Google Scholar]
- Afrooz, A.R.M.N.; Hussain, S.M.; Saleh, N.B. Aggregate size and structure determination of nanomaterials in physiological media: Importance of dynamic evolution. J. Nanopart. Res. 2014, 16, 2771–2777. [Google Scholar] [CrossRef]
- Sabo-Attwood, T.; Unrine, J.M.; Stone, J.W.; Murphy, C.J.; Ghoshroy, S.; Blom, D.; Bertsch, P.M.; Newman, L.A. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 2012, 6, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Brant, J.; Lecoanet, H.; Wiesner, M.R. Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J. Nanopart. Res. 2005, 7, 545–553. [Google Scholar] [CrossRef]
- Sergio, M.; Behzadi, H.; Otto, A.; van der Spoel, D. Fullerenes toxicity and electronic properties. Environ. Chem. Lett. 2012, 11, 105–118. [Google Scholar] [CrossRef]
- Dupin, D.; Rosselgong, J.; Armes, S.P.; Routh, A.F. Swelling kinetics for a pH-induced latex-to-microgel transition. Langmuir 2007, 23, 4035–4041. [Google Scholar] [CrossRef] [PubMed]
- Domingos, R.F.; Franco, C.; Pinheiro, J.P. The role of charged polymer coatings of nanoparticles on the speciation and fate of metal ions in the environment. Environ. Sci. Pollut. Res. 2014, 22, 2900–2906. [Google Scholar] [CrossRef] [PubMed]
- Felix, L.C.; Ortega, V.A.; Ede, J.D.; Goss, G.G. Physicochemical characteristics of polymer-coated metal-oxide nanoparticles and their toxicological effects on zebrafish (Danio rerio) development. Environ. Sci. Technol. 2013, 47, 6589–6596. [Google Scholar] [CrossRef] [PubMed]
- Chiao, S.H.; Lin, S.H.; Shen, C.I.; Liao, J.W.; Bau, I.J.; Wei, J.C.; Tseng, L.P.; Hsu, S.H.; Lai, P.S.; Lin, S.Z.; et al. Efficacy and safety of nanohybrids comprising silver nanoparticles and silicate clay for controlling Salmonella infection. Int. J. Nanomed. 2012, 2421–2412. [Google Scholar]
- Gonçalves, M.; Figueira, P.; Maciel, D.; Rodrigues, J.; Qu, X.; Liu, C.; Tomás, H.; Li, Y. pH-sensitive Laponite®/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomater. 2014, 10, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Brahmachari, S.; Das, P.K. pH-responsive single walled carbon nanotube dispersion for target specific release of doxorubicin to cancer cells. Macromol. Biosci. 2014, 14, 1795–1806. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Liu, Y.; Li, X.; Li, M. Biochemical responses of duckweed (Spirodela polyrhiza) to zinc oxide nanoparticles. Arch. Environ. Contam. Toxicol. 2012, 64, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Oukarroum, A.; Bras, S.; Perreault, F.; Popovic, R. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol. Environ. Saf. 2012, 78, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Alloy, M.M.; Roberts, A.P. Effects of suspended multi-walled carbon nanotubes on daphnid growth and reproduction. Ecotoxicol. Environ. Saf. 2011, 74, 1839–1843. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, L.E.; Tarres, L.; Bongiovanni, S.; Barbero, C.A.; Kogan, M.J.; Rivarola, V.A.; Bertuzzi, M.L.; Yslas, E.I. Assessment of polyaniline nanoparticles toxicity and teratogenicity in aquatic environment using Rhinella arenarum model. Ecotoxicol. Environ. Saf. 2015, 114, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Ji, J.; Long, Z.; Yang, K.; Wu, F. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. Water Res. 2012, 46, 4477–4487. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Masse, S.; Zhang, H.; Hélary, C.; Li, L.; Coradin, T. Surface reactivity of hydroxyapatite nanocoatings deposited on iron oxide magnetic spheres toward toxic metals. J. Colloid Interface Sci. 2014, 417, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.K.; Lyon, D.Y.; Alvarez, P.J.J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 2006, 40, 3527–3532. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.J.; Bennett, S.; Keller, A.A.; Pease, S.; Lenihan, H.S. TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS ONE 2012, 7, e30321–e30327. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Fang, T.; Yu, L.; Sima, X.; Zhu, W. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Sci. Total Environ. 2011, 409, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Dale, A.L.; Casman, E.A.; Lowry, G.V.; Lead, J.R.; Viparelli, E.; Baalousha, M. Modeling nanomaterial environmental fate in aquatic systems. Environ. Sci. Technol. 2015, 49, 2587–2593. [Google Scholar] [CrossRef] [PubMed]
- Nel, A.; Xia, T.; Meng, H.; Wang, X.; Lin, S.; Ji, Z.; Zhang, H. Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 2013, 46, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Epa, V.C.; Burden, F.R.; Tassa, C.; Weissleder, R.; Shaw, S.; Winkler, D.A. Modeling biological activities of nanoparticles. Nano Lett. 2012, 12, 5808–5812. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plazas-Tuttle, J.; Rowles, L.S., III; Chen, H.; Bisesi, J.H., Jr.; Sabo-Attwood, T.; Saleh, N.B. Dynamism of Stimuli-Responsive Nanohybrids: Environmental Implications. Nanomaterials 2015, 5, 1102-1123. https://doi.org/10.3390/nano5021102
Plazas-Tuttle J, Rowles LS III, Chen H, Bisesi JH Jr., Sabo-Attwood T, Saleh NB. Dynamism of Stimuli-Responsive Nanohybrids: Environmental Implications. Nanomaterials. 2015; 5(2):1102-1123. https://doi.org/10.3390/nano5021102
Chicago/Turabian StylePlazas-Tuttle, Jaime, Lewis S. Rowles, III, Hao Chen, Joseph H. Bisesi, Jr., Tara Sabo-Attwood, and Navid B. Saleh. 2015. "Dynamism of Stimuli-Responsive Nanohybrids: Environmental Implications" Nanomaterials 5, no. 2: 1102-1123. https://doi.org/10.3390/nano5021102
APA StylePlazas-Tuttle, J., Rowles, L. S., III, Chen, H., Bisesi, J. H., Jr., Sabo-Attwood, T., & Saleh, N. B. (2015). Dynamism of Stimuli-Responsive Nanohybrids: Environmental Implications. Nanomaterials, 5(2), 1102-1123. https://doi.org/10.3390/nano5021102