Next Issue
Volume 14, April-1
Previous Issue
Volume 14, March-1
 
 

Nanomaterials, Volume 14, Issue 6 (March-2 2024) – 75 articles

Cover Story (view full-size image): Organic–inorganic (O-I) hybrid dielectric nanomaterials are essential for OTFTs due to their unique combination of organic and inorganic properties. Here, colloidally stable O-I TiO2 hybrid nanoparticles using an amphiphilic polymer as a stabilizer were successfully prepared through a low-temperature sol–gel process. These long-term stable hybrid sols formed high-quality dielectric layers with a high dielectric constant (κ) and minimal leakage current density, which enhances the electrical performance of gate dielectrics, including superior field-effect mobility and stable operation in OTFTs. This research offers a reliable method for preparing O-I hybrid dielectric materials to improve OTFTs’ operational stability and electrical performance. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 10197 KiB  
Article
Effect of Strain Rate, Temperature, Vacancy, and Microcracks on Mechanical Properties of 8-16-4 Graphyne
by Qing Peng, Zeyu Huang, Gen Chen, Yuqiang Zhang, Xiaofan Zhang, Xiao-Jia Chen and Zhongwei Hu
Nanomaterials 2024, 14(6), 556; https://doi.org/10.3390/nano14060556 - 21 Mar 2024
Viewed by 891
Abstract
The 8-16-4 graphyne, a recently identified two-dimensional carbon allotrope, exhibits distinctive mechanical and electrical properties, making it a candidate material for flexible electronic applications. This study endeavors to enhance our comprehension of the fracture behavior and mechanical properties of 8-16-4 graphyne. The mechanical [...] Read more.
The 8-16-4 graphyne, a recently identified two-dimensional carbon allotrope, exhibits distinctive mechanical and electrical properties, making it a candidate material for flexible electronic applications. This study endeavors to enhance our comprehension of the fracture behavior and mechanical properties of 8-16-4 graphyne. The mechanical properties of 8-16-4 graphyne were evaluated through molecular dynamics simulations, examining the impact of boundary conditions, temperature, and strain rate, as well as the coupled interactions between temperature, vacancy defects, and microcracks. The findings reveal that 8-16-4 graphyne undergoes fracture via the cleavage of ethylene bonds at a critical strain value of approximately 0.29. Variations in boundary conditions and strain rate influence the fidelity of tensile simulation outcomes. Temperature, vacancy concentration, and the presence of microcracks markedly affect the mechanical properties of 8-16-4 graphyne. In contrast to other carbon allotropes, 8-16-4 graphyne exhibits a diminished sensitivity to vacancy defects in its mechanical performance. However, carbon vacancies at particular sites are more prone to initiating cracks. Furthermore, pre-existing microcracks within the material can potentially alter the fracture mode. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

13 pages, 6727 KiB  
Article
Effect of Anisotropy of Reduced Graphene Oxide on Thermal and Electrical Properties in Silicon Carbide Matrix Composites
by Kamil Broniszewski, Jarosław Woźniak, Tomasz Cygan, Marek Kostecki, Dorota Moszczyńska, Marcin Chmielewski, Kamil Dydek and Andrzej Olszyna
Nanomaterials 2024, 14(6), 555; https://doi.org/10.3390/nano14060555 - 21 Mar 2024
Viewed by 735
Abstract
Reduced graphene oxide, due to its structure, exhibits anisotropic properties, which are particularly evident in electrical and thermal conductivity. This study focuses on examining the influence of reduced graphene oxide in silicon carbide on these properties in directions perpendicular and parallel to the [...] Read more.
Reduced graphene oxide, due to its structure, exhibits anisotropic properties, which are particularly evident in electrical and thermal conductivity. This study focuses on examining the influence of reduced graphene oxide in silicon carbide on these properties in directions perpendicular and parallel to the direction of the aligned rGO flakes in produced composites. Reduced graphene oxide is characterized by very high in-plane thermal and electrical conductivity. It was observed that the addition of rGO increases thermal conductivity from 64 W/mK (reference sample) up to 98 W/mK for a SiC–3 wt.% rGO composite in the direction parallel to the rGO flakes. In the perpendicular direction, the values were slightly lower, reaching up to 84 W/mK. The difference observed in electrical conductivity values is more significant and is 1–2 orders of magnitude higher for the flakes’ alignment direction. The measured electrical conductivity increased from 1.2710−8 S/m for the reference SiC sinter up to 1.55 × 10−5 S/m and 1.2410−4 S/m for the composites with 3 wt.% rGO for the perpendicular and parallel directions, respectively. This represents an enhancement of four orders of magnitude, with a clearly visible influence of the anisotropy of the rGO. The composite’s enhanced electrical and thermal conductivity make it particularly attractive for electronic devices and high-power applications. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

16 pages, 5834 KiB  
Article
Synthesis and Unique Behaviors of High-Purity HEA Nanoparticles Using Femtosecond Laser Ablation
by David Fieser, Yucheng Lan, Antonino Gulino, Giuseppe Compagnini, Doug Aaron, Matthew Mench, Denzel Bridges, Hugh Shortt, Peter Liaw and Anming Hu
Nanomaterials 2024, 14(6), 554; https://doi.org/10.3390/nano14060554 - 21 Mar 2024
Viewed by 873
Abstract
High-entropy alloys (HEAs) are a class of metal alloys consisting of four or more molar equal or near-equal elements. HEA nanomaterials have garnered significant interest due to their wide range of applications, such as electrocatalysis, welding, and brazing. Their unique multi-principle high-entropy effect [...] Read more.
High-entropy alloys (HEAs) are a class of metal alloys consisting of four or more molar equal or near-equal elements. HEA nanomaterials have garnered significant interest due to their wide range of applications, such as electrocatalysis, welding, and brazing. Their unique multi-principle high-entropy effect allows for the tailoring of the alloy composition to facilitate specific electrochemical reactions. This study focuses on the synthesis of high-purity HEA nanoparticles using the method of femtosecond laser ablation synthesis in liquid. The use of ultrashort energy pulses in femtosecond lasers enables uniform ablation of materials at significantly lower power levels compared to longer pulse or continuous pulse lasers. We investigate how various femtosecond laser parameters affect the morphology, phase, and other characteristics of the synthesized nanoparticles. An innovative aspect of our solution is its ability to rapidly generate multi-component nanoparticles with a high fidelity as the input multi-component target material at a significant yielding rate. Our research thus focuses on a novel synthesis of high-entropy alloying CuCoMn1.75NiFe0.25 nanoparticles. We explore the characterization and unique properties of the nanoparticles and consider their electrocatalytic applications, including high power density aluminum air batteries, as well as their efficacy in the oxygen reduction reaction (ORR). Additionally, we report a unique nanowire fabrication phenomenon achieved through nanojoining. The findings from this study shed light on the potential of femtosecond laser ablation synthesis in liquid (FLASiL) as a promising technique for producing high-purity HEA nanoparticles. Full article
Show Figures

Figure 1

17 pages, 1137 KiB  
Review
Exploring the Application of Graphene Oxide-Based Nanomaterials in the Repair of Osteoporotic Fractures
by Hongfa Zhou, Jinyuan Chen, Xuan Zhang, JingJing Chen, Jiayou Chen, Shicheng Jia, Deli Wang, Hui Zeng, Jian Weng and Fei Yu
Nanomaterials 2024, 14(6), 553; https://doi.org/10.3390/nano14060553 - 21 Mar 2024
Viewed by 1026
Abstract
Osteoporotic fractures are induced by osteoporosis, which may lead to the degradation of bone tissues and microstructures and impair their healing ability. Conventional internal fixation therapies are ineffective in the treatment of osteoporotic fractures. Hence, developing tissue engineering materials is crucial for repairing [...] Read more.
Osteoporotic fractures are induced by osteoporosis, which may lead to the degradation of bone tissues and microstructures and impair their healing ability. Conventional internal fixation therapies are ineffective in the treatment of osteoporotic fractures. Hence, developing tissue engineering materials is crucial for repairing osteoporotic fractures. It has been demonstrated that nanomaterials, particularly graphene oxide (GO), possess unique advantages in tissue engineering due to their excellent biocompatibility, mechanical properties, and osteoinductive abilities. Based on that, GO-nanocomposites have garnered significant attention and hold promising prospects for bone repair applications. This paper provides a comprehensive insight into the properties of GO, preparation methods for nanocomposites, advantages of these materials, and relevant mechanisms for osteoporotic fracture applications. Full article
(This article belongs to the Special Issue Carbon-Based Nanomaterials for Biomedicine Applications)
Show Figures

Figure 1

18 pages, 2983 KiB  
Article
Biosynthesis of Cu-In-S Nanoparticles by a Yeast Isolated from Union Glacier, Antarctica: A Platform for Enhanced Quantum Dot-Sensitized Solar Cells
by Carolina Arriaza-Echanes, Jessica L. Campo-Giraldo, Felipe Valenzuela-Ibaceta, Javiera Ramos-Zúñiga and José M. Pérez-Donoso
Nanomaterials 2024, 14(6), 552; https://doi.org/10.3390/nano14060552 - 21 Mar 2024
Viewed by 1093
Abstract
In recent years, the utilization of extremophile microorganisms for the synthesis of metal nanoparticles, featuring enhanced properties and diverse compositions, has emerged as a sustainable strategy to generate high-quality nanomaterials with unique characteristics. Our study focuses on the biosynthesis of Cu-In-S (CIS) nanoparticles, [...] Read more.
In recent years, the utilization of extremophile microorganisms for the synthesis of metal nanoparticles, featuring enhanced properties and diverse compositions, has emerged as a sustainable strategy to generate high-quality nanomaterials with unique characteristics. Our study focuses on the biosynthesis of Cu-In-S (CIS) nanoparticles, which has garnered considerable attention in the past decade due to their low toxicity and versatile applications in biomedicine and solar cells. Despite this interest, there is a notable absence of reports on biological methods for CIS nanoparticle synthesis. In this research, three yeast species were isolated from soil samples in an extreme Antarctic environment—Union Glacier, Ellsworth Mountains. Among these isolates, Filobasidium stepposum demonstrated the capability to biosynthesize CIS nanoparticles when exposed to copper sulfate, indium chloride, glutathione, and cysteine. Subsequent purification and spectroscopic characterization confirmed the presence of characteristic absorbance and fluorescence peaks for CIS nanoparticles at 500 and 650 nm, respectively. Transmission electron microscopy analysis revealed the synthesis of monodisperse nanoparticles with a size range of 3–5 nm. Energy dispersive X-ray spectroscopy confirmed the composition of the nanoparticles, revealing the presence of copper, indium, and sulfur. The copper/indium ratio ranged from 0.15 to 0.27, depending on the reaction time. The biosynthesized CIS nanoparticles showed higher photostability than biomimetic nanoparticles and demonstrated successful application as photosensitizers in quantum dot-sensitized solar cells (QDSSC), achieving a conversion efficiency of up to 0.0247%. In summary, this work presents a cost-effective, straightforward, and environmentally friendly method for CIS nanoparticle synthesis. Furthermore, it constitutes the first documented instance of a biological procedure for producing these nanoparticles, opening avenues for the development of environmentally sustainable solar cells. Full article
(This article belongs to the Special Issue Nanomaterials for Green and Sustainable World)
Show Figures

Figure 1

11 pages, 3048 KiB  
Article
Self-Powered Broadband Photodetector Based on NiO/Si Heterojunction Incorporating Graphene Transparent Conducting Layer
by Bhishma Pandit, Bhaskar Parida, Hyeon-Sik Jang and Keun Heo
Nanomaterials 2024, 14(6), 551; https://doi.org/10.3390/nano14060551 - 21 Mar 2024
Viewed by 710
Abstract
In this study, a self-powered broadband photodetector based on graphene/NiO/n-Si was fabricated by the direct spin-coating of nanostructured NiO on the Si substrate. The current–voltage measurement of the NiO/Si heterostructure exhibited rectifying characteristics with enhanced photocurrent under light illumination. Photodetection capability was measured [...] Read more.
In this study, a self-powered broadband photodetector based on graphene/NiO/n-Si was fabricated by the direct spin-coating of nanostructured NiO on the Si substrate. The current–voltage measurement of the NiO/Si heterostructure exhibited rectifying characteristics with enhanced photocurrent under light illumination. Photodetection capability was measured in the range from 300 nm to 800 nm, and a higher photoresponse in the UV region was observed due to the wide bandgap of NiO. The presence of a top graphene transparent conducting electrode further enhanced the responsivity in the whole measured wavelength region from 350 to 800 nm. The photoresponse of the NiO/Si detector at 350 nm was found to increase from 0.0187 to 0.163 A/W at −1 V with the insertion of the graphene top layer. A high photo-to-dark current ratio (≃104) at the zero bias indicates that the device has advantageous application in energy-efficient high-performance broadband photodetectors. Full article
Show Figures

Figure 1

13 pages, 4507 KiB  
Article
Short-Chain Sulfur Confined into Nitrogen-Doped Hollow Carbon Nanospheres for High-Capacity Potassium Storage
by Wenhan Liu, Tengfei Shi, Fang Liu, Chen Yang, Fan Qiao, Kang Han, Chunhua Han, Jiashen Meng and Xuanpeng Wang
Nanomaterials 2024, 14(6), 550; https://doi.org/10.3390/nano14060550 - 20 Mar 2024
Viewed by 728
Abstract
Carbon-based materials are one of the ideal negative electrode materials for potassium ion batteries. However, the limited active sites and sluggish diffusion ion kinetics still hinder its commercialization process. To address these problems, we design a novel carbon composite anode, by confining highly [...] Read more.
Carbon-based materials are one of the ideal negative electrode materials for potassium ion batteries. However, the limited active sites and sluggish diffusion ion kinetics still hinder its commercialization process. To address these problems, we design a novel carbon composite anode, by confining highly reactive short-chain sulfur molecules into nitrogen-doped hollow carbon nanospheres (termed SHC-450). The formation process involves the controlled synthesis of hollow polyaniline (PANI) nanospheres as precursors via an Ostwald ripening mechanism and subsequent sulfuration treatment. The high content of constrained short-chain sulfur molecules (20.94 wt%) and considerable N (7.15 wt%) ensure sufficient active sites for K+ storage in SHC-450. Accordingly, the SHC-450 electrode exhibits a high reversible capacity of 472.05 mAh g−1 at 0.1 A g−1 and good rate capability (172 mAh g−1 at 2 A g−1). Thermogravimetric analysis shows that SHC-450 has impressive thermal stability to withstand a high temperature of up to 640 °C. Ex situ spectroscopic characterizations reveal that the short-chain sulfur provides high capacity through reversible formation of K2S. Moreover, its special hollow structure not only provides ample space for highly active short-chain sulfur reactants but also effectively mitigates volume expansion during the sulfur conversion process. This work offers new perspectives on enhanced K+ storage performance from an interesting anode design and the space-limited domain principle. Full article
(This article belongs to the Special Issue Nanostructured Materials for Carbon Neutrality)
Show Figures

Graphical abstract

11 pages, 2495 KiB  
Article
A Palladium Catalyst Supported on Boron-Doped Porous Carbon for Efficient Dehydrogenation of Formic Acid
by Hui Liu, Mengyuan Huang, Wenling Tao, Liangliang Han, Jinqiang Zhang and Qingshan Zhao
Nanomaterials 2024, 14(6), 549; https://doi.org/10.3390/nano14060549 - 20 Mar 2024
Viewed by 779
Abstract
Formic acid has emerged as a highly promising hydrogen storage material, and the development of efficient catalysts to facilitate its dehydrogenation remains imperative. In this study, a novel catalyst consisting of palladium nanoparticles supported on boron-doped porous carbon (Pd/BPC) was successfully synthesized to [...] Read more.
Formic acid has emerged as a highly promising hydrogen storage material, and the development of efficient catalysts to facilitate its dehydrogenation remains imperative. In this study, a novel catalyst consisting of palladium nanoparticles supported on boron-doped porous carbon (Pd/BPC) was successfully synthesized to enable efficient hydrogen production through the dehydrogenation of formic acid. The impacts of the boron doping ratio, doping temperature, and palladium reduction temperature on the catalyst’s performance were systemically investigated. The results demonstrated the Pd/BPC catalyst synthesized with a carbon-to-boron ratio of 1:5 by calcination at 900 °C and subsequent reduction at 60 °C exhibited superior formic acid dehydrogenation performance, being 2.9 and 3.8 times greater than that of the Pd/PC catalysts without boron doping and commercial Pd/C, respectively. Additionally, the catalyst showed excellent cycle stability with no significant activity reduction after five consecutive cycles. Experimental and theoretical results reveal that boron doping not only facilitates the homogenous distribution of Pd nanoparticles but also induces a stronger support–metal interaction, thereby reinforcing the catalytic performance. This research is expected to provide valuable insights into the economically viable and efficient production of environmentally friendly hydrogen energy. Full article
(This article belongs to the Special Issue Preparation and Catalytic Properties of Porous Carbon Nanomaterials)
Show Figures

Figure 1

12 pages, 3365 KiB  
Article
Bias-Tunable Quantum Well Infrared Photodetector
by Gyana Biswal, Michael Yakimov, Vadim Tokranov, Kimberly Sablon, Sergey Tulyakov, Vladimir Mitin and Serge Oktyabrsky
Nanomaterials 2024, 14(6), 548; https://doi.org/10.3390/nano14060548 - 20 Mar 2024
Viewed by 714
Abstract
With the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and [...] Read more.
With the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and mid-wave IR spectral regions. The sensor is a Quantum Well Infrared Photodetector (QWIP) containing asymmetrically doped double QWs where the external electric field alters the electron population in the wells and hence spectral responsivity. The design rules are obtained by calculating the electronic transition energies for symmetric and antisymmetric double-QW states using a Schrödinger–Poisson solver. The sensor is grown and characterized aiming detection in mid-wave (~5 µm) to long-wave IR (~8 µm) spectral ranges. The structure is grown using molecular beam epitaxy (MBE) and contains 25 periods of coupled double GaAs QWs and Al0.38Ga0.62As barriers. One of the QWs in the pair is modulation-doped to provide asymmetry in potential. The QWIPs are tested with blackbody radiation and FTIR down to 77 K. As a result, the ratio of the responsivities of the two bands at about 5.5 and 8 µm is controlled over an order of magnitude demonstrating tunability between MWIR and LWIR spectral regions. Separate experiments using parameterized image transformations of wideband LWIR imagery are performed to lay the framework for utilizing tunable QWIP sensors in object recognition applications. Full article
(This article belongs to the Special Issue Graphene-Based Optoelectronic and Plasmonic Devices)
Show Figures

Figure 1

14 pages, 2494 KiB  
Article
One-Step Synthesis of 3D Graphene Aerogel Supported Pt Nanoparticles as Highly Active Electrocatalysts for Methanol Oxidation Reaction
by Xiaoye Wo, Rui Yan, Xiao Yu, Gang Xie, Jinlong Ma, Yanpeng Cao, Aijun Li, Jian Huang, Caixia Huo, Fenghua Li, Yu Wang, Liqiang Luo and Qixian Zhang
Nanomaterials 2024, 14(6), 547; https://doi.org/10.3390/nano14060547 - 20 Mar 2024
Viewed by 679
Abstract
Nowadays, two of the biggest obstacles restricting the further development of methanol fuel cells are excessive cost and insufficient catalytic activity of platinum-based catalysts. Herein, platinum nanoparticle supported graphene aerogel (Pt/3DGA) was successfully synthesized by a one-step hydrothermal self-assembly method. The loose three-dimensional [...] Read more.
Nowadays, two of the biggest obstacles restricting the further development of methanol fuel cells are excessive cost and insufficient catalytic activity of platinum-based catalysts. Herein, platinum nanoparticle supported graphene aerogel (Pt/3DGA) was successfully synthesized by a one-step hydrothermal self-assembly method. The loose three-dimensional structure of the aerogel is stabilized by a simple one-step method, which not only reduces cost compared to the freeze-drying technology, but also optimizes the loading method of nanoparticles. The prepared Pt/3DGA catalyst has a three-dimensional porous structure with a highly cross-linked, large specific surface area, even dispersion of Pt NPs and good electrical conductivity. It is worth noting that its catalytic activity is 438.4 mA/mg with long-term stability, which is consistent with the projected benefits of anodic catalytic systems in methanol fuel cells.. Our study provides an applicable method for synthesizing nano metal particles/graphene-based composites. Full article
Show Figures

Figure 1

17 pages, 9809 KiB  
Article
Quantifying the Size-Dependent Shear Banding Behavior in High-Entropy Alloy-Based Nanolayered Glass
by Kaiqing Dai, Chun Zhang, Wenjun Lu and Jianjun Li
Nanomaterials 2024, 14(6), 546; https://doi.org/10.3390/nano14060546 - 20 Mar 2024
Viewed by 642
Abstract
Extensive research has shown that nanolayered structures are capable of suppressing the shear banding in metallic glass in nanoindentation experiments. However, the specific mode and mechanism of the shear banding underneath the indenter remains unknown. Also, the quantification of shear banding-induced strain localization [...] Read more.
Extensive research has shown that nanolayered structures are capable of suppressing the shear banding in metallic glass in nanoindentation experiments. However, the specific mode and mechanism of the shear banding underneath the indenter remains unknown. Also, the quantification of shear banding-induced strain localization is still a challenge. Herein, the size-dependent shear banding behavior of a CuTiZrNb high-entropy alloy-based nanolayered glass with individual layer thicknesses (h) ranging from 5 to 80 nm was systematically investigated by nanoindentation tests. It was found that the hardness of the designed structure was almost size-independent. Yet, a clear transition in the deformation modes from the cutting-like shear bands to the kinking-like ones was discovered as h decreased to 10 nm. Moreover, multiple secondary shear bands also appeared, in addition to the primary ones, in the sample with h = 10 nm. The transition leads to an obvious strain delocalization, as clearly illustrated by the proposed theoretical model, which is based on the assumption of a pure shear stress state to quantify the shear banding-induced strain localization. The strain delocalization results from the higher density of amorphous/amorphous interfaces that exhibit the change in morphology with a refined layered glass structure. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

13 pages, 3715 KiB  
Article
A Conductive Microcavity Created by Assembly of Carbon Nanotube Buckypapers for Developing Electrochemically Wired Enzyme Cascades
by Itthipon Jeerapan, Yannig Nedellec and Serge Cosnier
Nanomaterials 2024, 14(6), 545; https://doi.org/10.3390/nano14060545 - 20 Mar 2024
Viewed by 749
Abstract
We describe the creation of a conductive microcavity based on the assembly of two pieces of carbon nanotube buckypaper for the entrapment of two enzymes, horseradish peroxidase (HRP) and glucose oxidase (GOx), as well as a redox mediator: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS). [...] Read more.
We describe the creation of a conductive microcavity based on the assembly of two pieces of carbon nanotube buckypaper for the entrapment of two enzymes, horseradish peroxidase (HRP) and glucose oxidase (GOx), as well as a redox mediator: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS). The hollow electrode, employing GOx, HRP, and the mediator, as an electrochemical enzyme cascade model, is utilized for glucose sensing at a potential of 50 mV vs. Ag/AgCl. This bienzyme electrode demonstrates the ability to oxidize glucose by GOx and subsequently convert H2O2 to water via the electrical wiring of HRP by ABTS. Different redox mediators (ABTS, potassium hexacyanoferrate (III), and hydroquinone) are tested for HRP wiring, with ABTS being the best candidate for the electroenzymatic reduction of H2O2. To demonstrate the possibility to optimize the enzyme cascade configuration, the enzyme ratio is studied with 1 mg HRP combined with variable amounts of GOx (1–4 mg) and 2 mg GOx combined with variable amounts of HRP (0.5–2 mg). The bienzyme electrode shows continuous operational stability for over a week and an excellent storage stability in phosphate buffer, with a decay of catalytic current by only 29% for 1 mM glucose after 100 days. Full article
Show Figures

Figure 1

17 pages, 7317 KiB  
Article
Efficient and Selective Removal of Palladium from Simulated High-Level Liquid Waste Using a Silica-Based Adsorbent NTAamide(C8)/SiO2-P
by Jiaxuan Shi, Junli Wang, Wentao Wang, Xuan Wu, Hui Wang and Jianwei Li
Nanomaterials 2024, 14(6), 544; https://doi.org/10.3390/nano14060544 - 20 Mar 2024
Viewed by 624
Abstract
In order to realize the effective separation of palladium from high-level liquid waste (HLLW), a ligand-supported adsorbent (NTAamide(C8)/SiO2-P) was prepared by the impregnation method in a vacuum. The SiO2-P carrier was synthesized by in situ polymerization of divinylbenzene and [...] Read more.
In order to realize the effective separation of palladium from high-level liquid waste (HLLW), a ligand-supported adsorbent (NTAamide(C8)/SiO2-P) was prepared by the impregnation method in a vacuum. The SiO2-P carrier was synthesized by in situ polymerization of divinylbenzene and styrene monomers on a macroporous silica skeleton. The NTAamide(C8)/SiO2-P adsorbent was fabricated by impregnating an NTAamide(C8) ligand into the pore of a SiO2-P carrier under a vacuum condition. The adsorption performance of NTAamide(C8)/SiO2-P in nitric acid medium has been systematically studied. In a solution of 0.2 M HNO3, the distribution coefficient of Pd on NTAamide(C8)/SiO2-P was 1848 mL/g with an adsorption percentage of 90.24%. With the concentration of nitric acid increasing, the adsorption capacity of NTAamide(C8)/SiO2-P decreases. Compared to the other 10 potential interfering ions in fission products, NTAamide(C8)/SiO2-P exhibited excellent adsorption selectivity for Pd(II). The separation factor (SFPd/other metals > 77.8) is significantly higher than that of similar materials. The interference of NaNO3 had a negligible effect on the adsorption performance of NTAamide(C8)/SiO2-P, which maintained above 90%. The adsorption kinetics of Pd(II) adsorption on NTAamide(C8)/SiO2-P fits well with the pseudo-second order model. The Sips model is more suitable than the Langmuir and Freundlich model for describing the adsorption behavior. Thermodynamic analysis showed that the adsorption of Pd(II) on NTAamide(C8)/SiO2-P was a spontaneous, endothermic, and rapid process. NTAamide(C8)/SiO2-P also demonstrated good reusability and economic feasibility. Full article
(This article belongs to the Special Issue Nanomaterials for Chemical Engineering (Volume III))
Show Figures

Figure 1

12 pages, 10074 KiB  
Article
Fabrication of Pre-Structured Substrates and Growth of CIGS Micro-Absorbers
by Marina Alves, Pedro Anacleto, Vasco Teixeira, Joaquim Carneiro and Sascha Sadewasser
Nanomaterials 2024, 14(6), 543; https://doi.org/10.3390/nano14060543 - 20 Mar 2024
Viewed by 699
Abstract
Second-generation thin-film Cu(In, Ga)Se2 (CIGS) solar cells are a well-established photovoltaic technology with a record power conversion efficiency of 23.6%. However, their reliance on critical raw materials, such as In and Ga, requires new approaches to reduce the amount of critical raw [...] Read more.
Second-generation thin-film Cu(In, Ga)Se2 (CIGS) solar cells are a well-established photovoltaic technology with a record power conversion efficiency of 23.6%. However, their reliance on critical raw materials, such as In and Ga, requires new approaches to reduce the amount of critical raw materials employed. The micro-concentrator concept involves the combination of thin-film photovoltaic technology with concentrator photovoltaic technology. This approach reduces the size of the solar cell to the micrometer range and uses optical concentration to collect sunlight from a larger area, focusing it onto micro solar cells. This work is devoted to the development of a process for manufacturing pre-structured substrates with regular arrays of holes with 200 and 250 µm diameters inside a SiOx insulating matrix. Subsequently, a Cu–In–Ga precursor is deposited by sputtering, followed by photoresist lift-off and the application of a Cu–In–Ga thermal annealing at 500 °C to improve precursor quality and assess pre-structured substrate stability under elevated temperatures. Finally, a two-stage selenization process leads to the formation of CIGS absorber micro-dots. This study presents in detail the fabrication process and explores the feasibility of a bottom-up approach using pre-structured substrates, addressing challenges encountered during fabrication and providing insights for future improvements in CIGS absorber materials. Full article
(This article belongs to the Special Issue State-of-the-Art Nanomaterials for Solar Cells)
Show Figures

Figure 1

14 pages, 4748 KiB  
Article
A Novel PDMS-Based Flexible Thermoelectric Generator Fabricated by Ag2Se and PEDOT:PSS/Multi-Walled Carbon Nanotubes with High Output Performance Optimized by Embedded Eutectic Gallium–Indium Electrodes
by Rui Guo, Weipeng Shi, Rui Guo, Chenyu Yang, Yi Chen, Yonghua Wang, Danfeng Cui, Dan Liu and Chenyang Xue
Nanomaterials 2024, 14(6), 542; https://doi.org/10.3390/nano14060542 - 20 Mar 2024
Viewed by 816
Abstract
Flexible thermoelectric generators (FTEGs), which can overcome the energy supply limitations of wearable devices, have received considerable attention. However, the use of toxic Te-based materials and fracture-prone electrodes constrains the application of FTEGs. In this study, a novel Ag2Se and Poly [...] Read more.
Flexible thermoelectric generators (FTEGs), which can overcome the energy supply limitations of wearable devices, have received considerable attention. However, the use of toxic Te-based materials and fracture-prone electrodes constrains the application of FTEGs. In this study, a novel Ag2Se and Poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate) (PEDOT:PSS)/multi-walled carbon nanotube (MWCNT) FTEG with a high output performance and good flexibility is developed. The thermoelectric columns formulated in the work are environmentally friendly and reliable. The key enabler of this work is the use of embedded EGaIn electrodes, which increase the temperature difference collected by the thermoelectric column, thereby improving the FTEG output performance. Additionally, the embedded EGaIn electrodes could be directly printed on polydimethylsiloxane (PDMS) molds without wax paper, which simplifies the preparation process of FTEGs and enhances the fabrication efficiency. The FTEG with embedded electrodes exhibits the highest output power density of 25.83 μW/cm2 and the highest output power of 10.95 μW at ΔT = 15 K. The latter is 31.6% higher than that of silver-based FTEGs and 2.5% higher than that of covered EGaIn-based FTEGs. Moreover, the prepared FTEG has an excellent flexibility (>1500 bends) and output power stability (>30 days). At high humidity and high temperature, the prepared FTEG maintains good performance. These results demonstrate that the prepared FTEGs can be used as a stable and environmentally friendly energy supply for wearable devices. Full article
(This article belongs to the Special Issue Study on the Thermoelectric Properties of Nanostructured Materials)
Show Figures

Figure 1

14 pages, 5379 KiB  
Article
Cobalt Ferrite Nanorods Synthesized with a Facile “Green” Method in a Magnetic Field
by Alexander L. Kwiatkowski, Petr V. Shvets, Ivan S. Timchenko, Darya E. Kessel, Elizaveta D. Shipkova, Konstantin I. Maslakov, Ivan A. Kuznetsov, Dmitry A. Muravlev, Olga E. Philippova and Andrey V. Shibaev
Nanomaterials 2024, 14(6), 541; https://doi.org/10.3390/nano14060541 - 20 Mar 2024
Viewed by 714
Abstract
We report a new facile method for the synthesis of prolate cobalt ferrite nanoparticles without additional stabilizers, which involves a co-precipitation reaction of Fe3+ and Co2+ ions in a static magnetic field. The magnetic field is demonstrated to be a key [...] Read more.
We report a new facile method for the synthesis of prolate cobalt ferrite nanoparticles without additional stabilizers, which involves a co-precipitation reaction of Fe3+ and Co2+ ions in a static magnetic field. The magnetic field is demonstrated to be a key factor for the 1D growth of cobalt ferrite nanocrystals in the synthesis. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy are applied to characterize the morphology and structure of the obtained nanoparticles. According to TEM, they represent nanorods with a mean length of 25 nm and a diameter of 3.4 nm that have a monocrystalline structure with characteristic plane spacing of 2.9 Å. XRD and Raman spectroscopy confirm the spinel CoFe2O4 structure of the nanorods. After aging, the synthesized nanorods exhibit maximum saturation magnetization and coercivity equal to 30 emu/g and 0.3 kOe, respectively. Thus, the suggested method is a simple and “green” way to prepare CoFe2O4 nanorods with high aspect ratios and pronounced magnetic properties, which are important for various practical applications, including biomedicine, energy storage, and the preparation of anisotropic magnetic nanocomposites. Full article
Show Figures

Figure 1

24 pages, 9565 KiB  
Article
The Influence of Machining Conditions on the Orientation of Nanocrystallites and Anisotropy of Physical and Mechanical Properties of Flexible Graphite Foils
by Vladimir A. Shulyak, Nikolai S. Morozov, Andrei V. Ivanov, Alexandra V. Gracheva, Sergei N. Chebotarev and Viktor V. Avdeev
Nanomaterials 2024, 14(6), 540; https://doi.org/10.3390/nano14060540 - 19 Mar 2024
Viewed by 700
Abstract
The physical and mechanical properties and structural condition of flexible graphite foils produced by processing natural graphite with nitric acid, hydrolysis, thermal expansion of graphite and subsequent rolling were studied. The processes of obtaining materials and changing their characteristics has been thoroughly described [...] Read more.
The physical and mechanical properties and structural condition of flexible graphite foils produced by processing natural graphite with nitric acid, hydrolysis, thermal expansion of graphite and subsequent rolling were studied. The processes of obtaining materials and changing their characteristics has been thoroughly described and demonstrated. The structural transformations of graphite in the manufacture of foils were studied by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). A decrease in the average size of the coherent scattering regions (CSR) of nanocrystallites was revealed during the transition from natural graphite to thermally expanded graphite from 57.3 nm to 20.5 nm at a temperature of 900 °C. The rolling pressure ranged from 0.05 MPa to 72.5 MPa. The thickness of the flexible graphite foils varied from 0.11 mm to 0.75 mm, the density—from 0.70 to 1.75 g/cm3. It was shown that with an increase in density within these limits, the compressibility of the graphite foil decreased from 65% to 9%, the recoverability increased from 5% to 60%, and the resiliency decreased from 10% to 6%, which is explained by the structural features of nanocrystallites. The properties’ anisotropy of graphite foils was studied. The tensile strength increased with increasing density from 3.0 MPa (ρ = 0.7 g/cm3) to 14.0 MPa (ρ = 1.75 g/cm3) both in the rolling direction L and across T. At the same time, the anisotropy of physical and mechanical properties increased with an increase in density along L and T to 12% with absolute values of 14.0 MPa against 12.5 MPa at a thickness of 200 μm. Expressed anisotropy was observed along L and T when studying the misorientation angles of nanocrystallites: at ρ = 0.7 g/cm3, it was from 13.4° to 14.4° (up to 5% at the same thickness); at ρ = 1.3 g/cm3—from 11.0° to 12.8° (up to 7%); at ρ = 1.75 g/cm3—from 10.9° to 12.4° (up to 11%). It was found that in graphite foils, there was an increase in the coherent scattering regions in nanocrystallites with an increase in density from 24.8 nm to 49.6 nm. The observed effect can be explained by the coagulation of nanocrystallites by enhancing the Van der Waals interaction between the surface planes of coaxial nanocrystallites, which is accompanied by an increase in microstrains. The results obtained can help discover the mechanism of deformation of porous graphite foils. The obtained results can help discover the deformation mechanism of porous graphite foils. We assume that this will help predict the material behavior under industrial operating conditions of products based flexible graphite foils. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

11 pages, 2026 KiB  
Article
Characterization of Mn5Ge3 Contacts on a Shallow Ge/SiGe Heterostructure
by Troy A. Hutchins-Delgado, Sadhvikas J. Addamane, Ping Lu and Tzu-Ming Lu
Nanomaterials 2024, 14(6), 539; https://doi.org/10.3390/nano14060539 - 19 Mar 2024
Viewed by 673
Abstract
Mn5Ge3 is a ferromagnetic phase of the Mn-Ge system that is a potential contact material for efficient spin injection and detection. Here, we investigate the creation of Mn5Ge3-based contacts on a Ge/SiGe [...] Read more.
Mn5Ge3 is a ferromagnetic phase of the Mn-Ge system that is a potential contact material for efficient spin injection and detection. Here, we investigate the creation of Mn5Ge3-based contacts on a Ge/SiGe quantum well heterostructure via solid-state synthesis. X-ray diffraction spectra fitting indicates the formation of Mn5Ge3-based contacts on bulk Ge and Ge/SiGe. High-resolution scanning transmission electron microscopy imaging and energy dispersive X-ray spectroscopy verify the correct Mn5Ge3-based phase formation. Schottky diode measurements, transmission line measurements, and Hall measurements reveal that Mn5Ge3-based contacts serve as good p-type contacts for Ge/SiGe quantum well heterostructures due to having a low Schottky barrier height of 0.10eV (extracted from a Mn5Ge3/n-Ge analogue) and a contact resistance in the order of 1 kΩ. Furthermore, we show that these electrical characteristics have a gate-voltage dependence, thereby providing tunability. Full article
(This article belongs to the Special Issue Advanced Spintronic and Electronic Nanomaterials)
Show Figures

Figure 1

11 pages, 3429 KiB  
Communication
Theoretical Analysis of a Magnetic Shielding System Combining Active and Passive Modes
by Qingzhi Meng, Zelin Wang, Qijing Lin, Dengfeng Ju, Xianfeng Liang and Dan Xian
Nanomaterials 2024, 14(6), 538; https://doi.org/10.3390/nano14060538 - 19 Mar 2024
Viewed by 592
Abstract
Considering the magnetic shielding requirements of both geomagnetic field and 50 Hz power-line frequency in the complex working conditions of the power grid, an electromagnetic shielding system combining active and passive modes is proposed in this article. A three-dimensional Helmholtz coil with a [...] Read more.
Considering the magnetic shielding requirements of both geomagnetic field and 50 Hz power-line frequency in the complex working conditions of the power grid, an electromagnetic shielding system combining active and passive modes is proposed in this article. A three-dimensional Helmholtz coil with a magnetic shielding barrel nested inside is established by the COMSOL simulation tool, and the magnetic shielding efficiency of the system is analyzed. Comparing different materials, the simulation results indicate that permalloy alloy exhibits better shielding performance than pure iron and nickel materials. Additionally, the overall shielding efficiency of the shielding barrel increases linearly with the number of multiple layers. Under the combined active and passive electromagnetic shielding conditions, the system achieves a shielding efficiency of SE = 113.98 dB, demonstrating excellent performance in shielding both AC and DC interference magnetic fields. This study provides theoretical guidance for the construction of magnetic shielding systems in electromagnetic interference environment. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

15 pages, 5775 KiB  
Article
A Room Temperature Trimethylamine Gas Sensor Based on Electrospinned Molybdenum Oxide Nanofibers/Ti3C2Tx MXene Heterojunction
by Shiteng Ma, Jingyu Guo, Hao Zhang, Xingyan Shao and Dongzhi Zhang
Nanomaterials 2024, 14(6), 537; https://doi.org/10.3390/nano14060537 - 18 Mar 2024
Viewed by 729
Abstract
The combination of two-dimensional material MXene and one-dimensional metal oxide semiconductor can improve the carrier transmission rate, which can effectively improve sensing performance. We prepared a trimethylamine gas sensor based on MoO3 nanofibers and layered Ti3C2Tx MXene. [...] Read more.
The combination of two-dimensional material MXene and one-dimensional metal oxide semiconductor can improve the carrier transmission rate, which can effectively improve sensing performance. We prepared a trimethylamine gas sensor based on MoO3 nanofibers and layered Ti3C2Tx MXene. Using electrospinning and chemical etching methods, one-dimensional MoO3 nanofibers and two-dimensional Ti3C2Tx MXene nanosheets were prepared, respectively, and the composites were characterized via XPS, SEM, and TEM. The Ti3C2Tx MXene–MoO3 composite material exhibits excellent room-temperature response characteristics to trimethylamine gas, showing high response (up to four for 2 ppm trimethylamine gas) and rapid response–recovery time (10 s/7 s). Further, we have studied the possible sensitivity mechanism of the sensor. The Ti3C2Tx MXene–MoO3 composite material has a larger specific surface area and more abundant active sites, combined with p–n heterojunction, which effectively improves the sensitivity of the sensor. Because of its low detection limit and high stability, it has the potential to be applied in the detection system of trimethylamine as a biomarker in exhaled air. Full article
(This article belongs to the Special Issue Advanced Nanomaterials in Gas and Humidity Sensors)
Show Figures

Figure 1

11 pages, 917 KiB  
Article
Rational Design of a Portable Chemometric-Assisted Voltammetric Sensor Based on Ion-Imprinted Polymeric Film for Co(II) Determination in Water
by Sabrina Di Masi, Nelson Arturo Manrique Rodriguez, Marco Costa, Giuseppe Egidio De Benedetto and Cosimino Malitesta
Nanomaterials 2024, 14(6), 536; https://doi.org/10.3390/nano14060536 - 18 Mar 2024
Viewed by 695
Abstract
Herein, chemometric-assisted synthesis of electrochemical sensors based on electropolymerised ion-imprinted polymeric (e-IIP) films was explored. Co(II)-IIPs sensors were prepared by performing electropolymerisation procedures of polymerisation mixtures comprising varying concentrations of an electroactive o-aminophenol (o-AP) monomer and Co(II) ions, respectively, according to the Taguchi [...] Read more.
Herein, chemometric-assisted synthesis of electrochemical sensors based on electropolymerised ion-imprinted polymeric (e-IIP) films was explored. Co(II)-IIPs sensors were prepared by performing electropolymerisation procedures of polymerisation mixtures comprising varying concentrations of an electroactive o-aminophenol (o-AP) monomer and Co(II) ions, respectively, according to the Taguchi L9 experimental design, exploiting the simultaneous evaluation of other controlled parameters during electrosynthesis. Each e-IIP developed from Taguchi runs was compared with the respective non-imprinted polymer (NIP) films and fitted according to Langmuir–Freudlich isotherms. Distinctive patterns of low and high-affinity films were screened based on the qualities and properties of the developed IIPs in terms of binding kinetics (KD), imprinting factor, and the heterogeneity index of produced cavities. These results can provide a generic protocol for chemometric-assisted synthesis of e-IIPs based on poly-o-AP, providing highly stable, reproducible, and high-affinity imprinted polymeric films for monitoring purposes. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

20 pages, 5113 KiB  
Article
Effect of Deposition Working Power on Physical Properties of RF-Sputtered CdTe Thin Films for Photovoltaic Applications
by Ana-Maria Răduță, Ana-Maria Panaitescu, Marina Manica, Sorina Iftimie, Vlad-Andrei Antohe, Ovidiu Toma, Adrian Radu, Lucian Ion, Mirela Petruta Suchea and Ștefan Antohe
Nanomaterials 2024, 14(6), 535; https://doi.org/10.3390/nano14060535 - 18 Mar 2024
Viewed by 683
Abstract
The main objective of this study was to determine the variation in the properties of cadmium telluride (CdTe) thin films deposited on a p-type Si substrate by the radio frequency magnetron sputtering technique at four different working powers (70 W, 80 W, 90 [...] Read more.
The main objective of this study was to determine the variation in the properties of cadmium telluride (CdTe) thin films deposited on a p-type Si substrate by the radio frequency magnetron sputtering technique at four different working powers (70 W, 80 W, 90 W, and 100 W). The substrate temperature, working pressure, and deposition time during the deposition process were kept constant at 220 °C, 0.46 Pa, and 30 min, respectively. To study the structural, morphological, and optical properties of the CdTe films grown under the mentioned experimental conditions, X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical spectroscopy were used. For a better analysis of the films’ structural and optical properties, a group of films were deposited onto optical glass substrates under similar deposition conditions. The electrical characterisation of Ag/CdTe/Al “sandwich” structures was also performed using current–voltage characteristics in the dark at different temperatures. The electrical measurements allowed the identification of charge transport mechanisms through the structure. New relevant information released by the present study points towards 90 W RF power as the optimum for obtaining a high crystallinity of ~1 μm nanostructured thin films deposited onto p-Si and optical glass substrates with optical and electrical properties that are suitable for use as absorber layers. The obtained high-quality CdTe nanostructured thin films are perfectly suitable for use as absorbers in CdTe thin-film photovoltaic cells. Full article
Show Figures

Figure 1

13 pages, 4353 KiB  
Article
High Barrier Properties of Butyl Rubber Composites Containing Liquid Rubber and Graphene Oxide
by Jiaye Li, Zhanghao Yang, Shanjun Hu, Xianhong Huang, Stephen Jerrams, Shui Hu, Li Liu and Shipeng Wen
Nanomaterials 2024, 14(6), 534; https://doi.org/10.3390/nano14060534 - 18 Mar 2024
Viewed by 699
Abstract
The high elasticity and excellent gas barrier properties of rubber composites make them irreplaceable in the field of sealing. Constructing a complicated barrier network to reduce free volume is crucial to improving gas barrier properties. In this research, liquid acrylonitrile-butadiene rubber/γ-Methacryloxypropyl trimethoxy silane [...] Read more.
The high elasticity and excellent gas barrier properties of rubber composites make them irreplaceable in the field of sealing. Constructing a complicated barrier network to reduce free volume is crucial to improving gas barrier properties. In this research, liquid acrylonitrile-butadiene rubber/γ-Methacryloxypropyl trimethoxy silane (KH570) modified graphene oxide/butyl rubber composites (LNBR/KGO/IIR) were fabricated. A KGO lamellar network was constructed to resist gas diffusion in the IIR matrix. Meanwhile, LNBR macromolecules further occupied the free volume inside the IIR composites, thereby maximizing the retardation of the path of small molecule gas permeation. The modification of GO by KH570 was successfully demonstrated through FTIR and XRD. The grafting rate of KH570 was calculated to be approximately 71.4%. KGO was well dispersed in IIR due to emulsion compounding and the formation of lamellar networks. The 300% modulus, tensile strength and tear strength of KGO/IIR were improved by 43.5%, 39.1% and 14.8%, respectively, compared to those of the IIR composite. In addition, the introduction of LNBR resulted in a 44.2% improvement in the gas barrier performance of nitrogen permeability relative to the original IIR composite. Full article
Show Figures

Figure 1

11 pages, 11896 KiB  
Article
Optical Limiting Response of Porous Carbon Dispersions
by Bo Gao, Xuhui Zhao, Lihe Yan, Lijiao Yang, Yue Zhang, Tao Lin and Jinhai Si
Nanomaterials 2024, 14(6), 533; https://doi.org/10.3390/nano14060533 - 17 Mar 2024
Viewed by 634
Abstract
With the wide application of intense lasers, the protection of human eyes and detectors from laser damage is becoming more and more strict. In this paper, we study the nonlinear optical limiting (OL) properties of porous carbon with a super large specific surface [...] Read more.
With the wide application of intense lasers, the protection of human eyes and detectors from laser damage is becoming more and more strict. In this paper, we study the nonlinear optical limiting (OL) properties of porous carbon with a super large specific surface area (2.9 × 103 m2/g) using the nanosecond Z-scan technique. Compared to the traditional OL material C60, the porous carbon material shows an excellent broadband limiting effect, and the limiting thresholds correspond to 0.11 J/cm2 for 532 nm and 0.25 J/cm2 for 1064 nm pulses, respectively. The nonlinear scattering experiments showed that the OL behavior was mainly attributed to the nonlinear scattering effect, which is caused by the rapid growth and expansion of bubbles in the dispersion induced by laser irradiation, and the scattered light distribution is consistent with the results of Mie’s scattering. These results suggest that porous carbon materials are expected to be applied to the field of laser protection in the future to further protect the human eye and precision optical instruments. Full article
Show Figures

Figure 1

12 pages, 12095 KiB  
Article
Effect of Electrochemically Active Top Electrode Materials on Nanoionic Conductive Bridge Y2O3 Random-Access Memory
by Yoonjin Cho, Sangwoo Lee, Seongwon Heo, Jin-Hyuk Bae, In-Man Kang, Kwangeun Kim, Won-Yong Lee and Jaewon Jang
Nanomaterials 2024, 14(6), 532; https://doi.org/10.3390/nano14060532 - 16 Mar 2024
Viewed by 708
Abstract
Herein, sol–gel-processed Y2O3 resistive random-access memory (RRAM) devices were fabricated. The top electrodes (TEs), such as Ag or Cu, affect the electrical characteristics of the Y2O3 RRAM devices. The oxidation process, mobile ion migration speed, and reduction [...] Read more.
Herein, sol–gel-processed Y2O3 resistive random-access memory (RRAM) devices were fabricated. The top electrodes (TEs), such as Ag or Cu, affect the electrical characteristics of the Y2O3 RRAM devices. The oxidation process, mobile ion migration speed, and reduction process all impact the conductive filament formation of the indium–tin–oxide (ITO)/Y2O3/Ag and ITO/Y2O3/Cu RRAM devices. Between Ag and Cu, Cu can easily be oxidized due to its standard redox potential values. However, the conductive filament is easily formed using Ag TEs. After triggering the oxidation process, the formed Ag mobile metal ions can migrate faster inside Y2O3 active channel materials when compared to the formed Cu mobile metal ions. The fast migration inside the Y2O3 active channel materials successfully reduces the SET voltage and improves the number of programming–erasing cycles, i.e., endurance, which is one of the nonvolatile memory parameters. These results elucidate the importance of the electrochemical properties of TEs, providing a deeper understanding of how these factors influence the resistive switching characteristics of metal oxide-based atomic switches and conductive-metal-bridge-filament-based cells. Full article
(This article belongs to the Special Issue Nano-Structured Thin Films: Growth, Characteristics, and Application)
Show Figures

Figure 1

22 pages, 2207 KiB  
Review
Biomimetic Scaffolds—A Novel Approach to Three Dimensional Cell Culture Techniques for Potential Implementation in Tissue Engineering
by Tomasz Górnicki, Jakub Lambrinow, Afsaneh Golkar-Narenji, Krzysztof Data, Dominika Domagała, Julia Niebora, Maryam Farzaneh, Paul Mozdziak, Maciej Zabel, Paweł Antosik, Dorota Bukowska, Kornel Ratajczak, Marzenna Podhorska-Okołów, Piotr Dzięgiel and Bartosz Kempisty
Nanomaterials 2024, 14(6), 531; https://doi.org/10.3390/nano14060531 - 16 Mar 2024
Cited by 1 | Viewed by 1066
Abstract
Biomimetic scaffolds imitate native tissue and can take a multidimensional form. They are biocompatible and can influence cellular metabolism, making them attractive bioengineering platforms. The use of biomimetic scaffolds adds complexity to traditional cell cultivation methods. The most commonly used technique involves cultivating [...] Read more.
Biomimetic scaffolds imitate native tissue and can take a multidimensional form. They are biocompatible and can influence cellular metabolism, making them attractive bioengineering platforms. The use of biomimetic scaffolds adds complexity to traditional cell cultivation methods. The most commonly used technique involves cultivating cells on a flat surface in a two-dimensional format due to its simplicity. A three-dimensional (3D) format can provide a microenvironment for surrounding cells. There are two main techniques for obtaining 3D structures based on the presence of scaffolding. Scaffold-free techniques consist of spheroid technologies. Meanwhile, scaffold techniques contain organoids and all constructs that use various types of scaffolds, ranging from decellularized extracellular matrix (dECM) through hydrogels that are one of the most extensively studied forms of potential scaffolds for 3D culture up to 4D bioprinted biomaterials. 3D bioprinting is one of the most important techniques used to create biomimetic scaffolds. The versatility of this technique allows the use of many different types of inks, mainly hydrogels, as well as cells and inorganic substances. Increasing amounts of data provide evidence of vast potential of biomimetic scaffolds usage in tissue engineering and personalized medicine, with the main area of potential application being the regeneration of skin and musculoskeletal systems. Recent papers also indicate increasing amounts of in vivo tests of products based on biomimetic scaffolds, which further strengthen the importance of this branch of tissue engineering and emphasize the need for extensive research to provide safe for humansbiomimetic tissues and organs. In this review article, we provide a review of the recent advancements in the field of biomimetic scaffolds preceded by an overview of cell culture technologies that led to the development of biomimetic scaffold techniques as the most complex type of cell culture. Full article
(This article belongs to the Special Issue Moving toward Biomimetic Tissue Engineered Scaffolds)
Show Figures

Figure 1

13 pages, 4356 KiB  
Article
Germanium-Based Optical Coatings for Aesthetic Enhancement with Low Radiofrequency Attenuation
by Enrique Carretero, Rocío Chueca and Rafael Alonso
Nanomaterials 2024, 14(6), 530; https://doi.org/10.3390/nano14060530 - 15 Mar 2024
Viewed by 668
Abstract
This work focused on developing optical coatings for decorative applications that remain transparent in the radiofrequency range. To achieve this, a combination of dielectric material (silicon-aluminum nitride, SiAlNx) and low-electrical-conductivity semiconductor material (germanium) was utilized. Germanium plays a crucial role in [...] Read more.
This work focused on developing optical coatings for decorative applications that remain transparent in the radiofrequency range. To achieve this, a combination of dielectric material (silicon-aluminum nitride, SiAlNx) and low-electrical-conductivity semiconductor material (germanium) was utilized. Germanium plays a crucial role in providing absorption in the visible spectrum, facilitating the design of coatings with various aesthetic appearances, while allowing for control over their transmittance. The optical properties of thin germanium layers were thoroughly characterized and leveraged to create multilayer designs with diverse aesthetic features. Different multilayer structures were designed, fabricated, and optically characterized, resulting in coatings with metallic gray, black, or various colors in reflection, while retaining the ability to transmit visible light for illumination and signaling applications. Finally, the radiofrequency attenuation of the developed coatings was measured, revealing negligible attenuation; this is in stark contrast to the metallic coatings used for decorative purposes, which can attenuate by up to 30 dB. Full article
(This article belongs to the Special Issue Optical Properties of Nanostructured Thin Films)
Show Figures

Figure 1

17 pages, 5055 KiB  
Article
Influence of Concentration, Surface Charge, and Natural Water Components on the Transport and Adsorption of Polystyrene Nanoplastics in Sand Columns
by Gabriela Hul, Hande Okutan, Philippe Le Coustumer, Stéphan Ramseier Gentile, Stéphane Zimmermann, Pascal Ramaciotti, Pauline Perdaems and Serge Stoll
Nanomaterials 2024, 14(6), 529; https://doi.org/10.3390/nano14060529 - 15 Mar 2024
Viewed by 614
Abstract
Information about the influence of surface charges on nanoplastics (NPLs) transport in porous media, the influence of NPL concentrations on porous media retention capacities, and changes in porous media adsorption capacities in the presence of natural water components are still scarce. In this [...] Read more.
Information about the influence of surface charges on nanoplastics (NPLs) transport in porous media, the influence of NPL concentrations on porous media retention capacities, and changes in porous media adsorption capacities in the presence of natural water components are still scarce. In this study, laboratory column experiments are conducted to investigate the transport behavior of positively charged amidine polystyrene (PS) latex NPLs and negatively charged sulfate PS latex NPLs in quartz sand columns saturated with ultrapure water and Geneva Lake water, respectively. Results obtained for ultrapure water show that amidine PS latex NPLs have more affinity for negatively charged sand surfaces than sulfate PS latex NPLs because of the presence of attractive electrical forces. As for the Geneva Lake water, under natural conditions, both NPL types and sand are negatively charged. Therefore, the presence of repulsion forces reduces NPL’s affinity for sand surfaces. The calculated adsorption capacities of sand grains for the removal of both types of NPLs from both types of water are oscillating around 0.008 and 0.004 mg g−1 for NPL concentrations of 100 and 500 mg L−1, respectively. SEM micrography shows individual NPLs or aggregates attached to the sand and confirms the limited role of the adsorption process in NPL retention. The important NPL retention, especially in the case of negatively charged NPLs, in Geneva Lake water-saturated columns is related to heteroaggregate formation and their further straining inside narrow pores. The presence of DOM and metal cations is then crucial to trigger the aggregation process and NPL retention. Full article
(This article belongs to the Special Issue Environmental Fate, Transport and Effects of Nanoplastics)
Show Figures

Graphical abstract

13 pages, 5156 KiB  
Article
Enhancing the Thermal Conductivity of CNT/AlN/Silicone Rubber Composites by Using CNTs Directly Grown on AlN to Achieve a Reduced Filler Filling Ratio
by Naoyuki Matsumoto, Don N. Futaba, Takeo Yamada and Ken Kokubo
Nanomaterials 2024, 14(6), 528; https://doi.org/10.3390/nano14060528 - 15 Mar 2024
Cited by 1 | Viewed by 821
Abstract
Achieving the thermal conductivity required for efficient heat management in semiconductors and other devices requires the integration of thermally conductive ceramic fillers at concentrations of 60 vol% or higher. However, an increased filler content often negatively affects the mechanical properties of the composite [...] Read more.
Achieving the thermal conductivity required for efficient heat management in semiconductors and other devices requires the integration of thermally conductive ceramic fillers at concentrations of 60 vol% or higher. However, an increased filler content often negatively affects the mechanical properties of the composite matrix, limiting its practical applicability. To address this issue, in this paper, we present a new strategy to reduce the required ceramic filler content: the use of a thermally conductive ceramic composite filler with carbon nanotubes (CNTs) grown on aluminum nitride (AlN). We combined catalyst coating technology with vacuum filtration to ensure that the catalyst was uniformly applied to micrometer-sized AlN particles, followed by the efficient and uniform synthesis of CNTs using a water-assisted process in a vertical furnace. By carefully controlling the number of vacuum filtration cycles and the growth time of the CNTs, we achieved precise control over the number and length of the CNT layers, thereby adjusting the properties of the composite to the intended specifications. When AlN/CNT hybrid fillers are incorporated into silicone rubber, while maintaining the mechanical properties of rubber, the thermal diffusivity achieved at reduced filler levels exceeds that of composites using AlN-only or simultaneous AlN and CNTs formulations. This demonstrates the critical influence of CNTs on AlN surfaces. Our study represents a significant advancement in the design of thermally conductive materials, with potential implications for a wide range of applications. Full article
Show Figures

Figure 1

33 pages, 9959 KiB  
Review
Resistive Switching Devices for Neuromorphic Computing: From Foundations to Chip Level Innovations
by Kannan Udaya Mohanan
Nanomaterials 2024, 14(6), 527; https://doi.org/10.3390/nano14060527 - 15 Mar 2024
Viewed by 1097
Abstract
Neuromorphic computing has emerged as an alternative computing paradigm to address the increasing computing needs for data-intensive applications. In this context, resistive random access memory (RRAM) devices have garnered immense interest among the neuromorphic research community due to their capability to emulate intricate [...] Read more.
Neuromorphic computing has emerged as an alternative computing paradigm to address the increasing computing needs for data-intensive applications. In this context, resistive random access memory (RRAM) devices have garnered immense interest among the neuromorphic research community due to their capability to emulate intricate neuronal behaviors. RRAM devices excel in terms of their compact size, fast switching capabilities, high ON/OFF ratio, and low energy consumption, among other advantages. This review focuses on the multifaceted aspects of RRAM devices and their application to brain-inspired computing. The review begins with a brief overview of the essential biological concepts that inspire the development of bio-mimetic computing architectures. It then discusses the various types of resistive switching behaviors observed in RRAM devices and the detailed physical mechanisms underlying their operation. Next, a comprehensive discussion on the diverse material choices adapted in recent literature has been carried out, with special emphasis on the benchmark results from recent research literature. Further, the review provides a holistic analysis of the emerging trends in neuromorphic applications, highlighting the state-of-the-art results utilizing RRAM devices. Commercial chip-level applications are given special emphasis in identifying some of the salient research results. Finally, the current challenges and future outlook of RRAM-based devices for neuromorphic research have been summarized. Thus, this review provides valuable understanding along with critical insights and up-to-date information on the latest findings from the field of resistive switching devices towards brain-inspired computing. Full article
(This article belongs to the Special Issue Neuromorphic Devices: Materials, Structures and Bionic Applications)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop