Next Issue

Table of Contents

Appl. Sci., Volume 1, Issue 1 (December 2011), Pages 1-55

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-3
Export citation of selected articles as:

Editorial

Jump to: Research, Review

Open AccessEditorial Applied Sciences—Connecting Theories with Practice
Appl. Sci. 2011, 1(1), 12; doi:10.3390/app1010012
Received: 9 September 2011 / Accepted: 9 September 2011 / Published: 16 September 2011
PDF Full-text (98 KB) | HTML Full-text | XML Full-text
Abstract
Applied sciences cover many interdisciplinary fields that put basic sciences to application and make big changes by taking the one not-so-small step from “knowing how” to “knowing how-to”, the serendipity of which is often intriguing. Applied sciences are so deeply entrenched in [...] Read more.
Applied sciences cover many interdisciplinary fields that put basic sciences to application and make big changes by taking the one not-so-small step from “knowing how” to “knowing how-to”, the serendipity of which is often intriguing. Applied sciences are so deeply entrenched in almost all aspects of our daily lives. To provide an advanced forum for scholars all over the world to discuss and communicate the cutting-edge development in this field, on behalf of the Editorial Board members, I am honored to introduce Applied Sciences, a scholarly, peer-reviewed open access journal. [...] Full article

Research

Jump to: Editorial, Review

Open AccessArticle Objective Measures of Emotion During Virtual Walks through Urban Environments
Appl. Sci. 2011, 1(1), 1-11; doi:10.3390/app1010001
Received: 4 May 2011 / Revised: 1 June 2011 / Accepted: 1 June 2011 / Published: 1 July 2011
Cited by 7 | PDF Full-text (203 KB) | HTML Full-text | XML Full-text
Abstract
Previous studies were able to demonstrate different verbally stated affective responses to environments. In the present study we used objective measures of emotion. We examined startle reflex modulation as well as changes in heart rate and skin conductance while subjects virtually walked [...] Read more.
Previous studies were able to demonstrate different verbally stated affective responses to environments. In the present study we used objective measures of emotion. We examined startle reflex modulation as well as changes in heart rate and skin conductance while subjects virtually walked through six different areas of urban Paris using the StreetView tool of Google maps. Unknown to the subjects, these areas were selected based on their median real estate prices. First, we found that price highly correlated with subjective rating of pleasantness. In addition, relative startle amplitude differed significantly between the area with lowest versus highest median real estate price while no differences in heart rate and skin conductance were found across conditions. We conclude that interaction with environmental scenes does elicit emotional responses which can be objectively measured and quantified. Environments activate motivational and emotional brain circuits, which is in line with the notion of an evolutionary developed system of environmental preference. Results are discussed in the frame of environmental psychology and aesthetics. Full article

Review

Jump to: Editorial, Research

Open AccessReview New Roles Assigned to the α1–β1 (and α2–β2) Interface of the Human Hemoglobin Molecule from Physiological to Cellular
Appl. Sci. 2011, 1(1), 13-55; doi:10.3390/app1010013
Received: 8 October 2011 / Revised: 4 November 2011 / Accepted: 14 November 2011 / Published: 17 November 2011
Cited by 1 | PDF Full-text (5525 KB) | HTML Full-text | XML Full-text
Abstract
Cellular life is reliant upon rapid and efficient responses to internal and external conditions. The basic molecular events associated with these processes are the structural transitions of the proteins (structural protein allostery) involved. From this view, the human hemoglobin (Hb) molecule (α [...] Read more.
Cellular life is reliant upon rapid and efficient responses to internal and external conditions. The basic molecular events associated with these processes are the structural transitions of the proteins (structural protein allostery) involved. From this view, the human hemoglobin (Hb) molecule (α2β2) holds a special position in this field. Hb has two types of αβ interface (i.e., α1β1 [and α2β2] and α1β2 [and α2β1]). The latter α1–β2 (and α2–β1) interface is known to be associated with cooperative O2 binding, and exhibits principal roles if the molecule goes from its deoxy to oxy quaternary structure. However, the role of the former α1–β1 (and α2–β2) interface has been unclear for a long time. In this regard, important and intriguing observations have been accumulating. A new role was attributed first as stabilizing the HbO2 tetramer against acidic autoxidation. That is, the α1–β1 (and α2–β2) interface produces a conformational constraint in the β chain whereby the distal (E7) histidine (His) residue is tilted slightly away from the bound O2 so as to prevent proton-catalyzed displacement of O2 by a solvent water molecule. The β chains thus acquire pH-dependent delayed autoxidation in the HbO2 tetramer. The next role was suggested by our studies searching for similar phenomena in normal human erythrocytes under mild heating. Tilting of the distal (E7) His in turn triggered degradation of the Hb molecule to hemichrome, and subsequent clustering of Heinz bodies within the erythrocyte. As Heinz body-containing red cells become trapped in the spleen, it was demonstrated that the α1–β1 (and α2–β2) interface may exert delicate control of the fate (removal) of its own erythrocyte. Herein we review and summarize the related results and current interpretation of the oxidative behavior of human Hb, emphasizing the correlation between hemichrome emergence and Heinz-body formation, and specifically discuss the new roles assigned to the α1–β1 (and α2–β2) interface. The α1–β1 (and α2–β2) interface seems to adequately differentiate between the two types of function (dual roles) from physiological to cellular. Full article

Journal Contact

MDPI AG
Applied Sciences Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
applsci@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Applied Sciences
Back to Top