Appl. Sci. 2011, 1(1), 13-55; doi:10.3390/app1010013
Review

New Roles Assigned to the α1–β1 (and α2–β2) Interface of the Human Hemoglobin Molecule from Physiological to Cellular

Department of Health Science, Prefectural University of Hiroshima, Hiroshima 734-8558, Japan
* Author to whom correspondence should be addressed.
Received: 8 October 2011; in revised form: 4 November 2011 / Accepted: 14 November 2011 / Published: 17 November 2011
PDF Full-text Download PDF Full-Text [5525 KB, Updated Version, uploaded 21 November 2011 13:45 CET]
The original version is still available [5536 KB, uploaded 17 November 2011 11:12 CET]
Abstract: Cellular life is reliant upon rapid and efficient responses to internal and external conditions. The basic molecular events associated with these processes are the structural transitions of the proteins (structural protein allostery) involved. From this view, the human hemoglobin (Hb) molecule (α2β2) holds a special position in this field. Hb has two types of αβ interface (i.e., α1β1 [and α2β2] and α1β2 [and α2β1]). The latter α1–β2 (and α2–β1) interface is known to be associated with cooperative O2 binding, and exhibits principal roles if the molecule goes from its deoxy to oxy quaternary structure. However, the role of the former α1–β1 (and α2–β2) interface has been unclear for a long time. In this regard, important and intriguing observations have been accumulating. A new role was attributed first as stabilizing the HbO2 tetramer against acidic autoxidation. That is, the α1–β1 (and α2–β2) interface produces a conformational constraint in the β chain whereby the distal (E7) histidine (His) residue is tilted slightly away from the bound O2 so as to prevent proton-catalyzed displacement of O2 by a solvent water molecule. The β chains thus acquire pH-dependent delayed autoxidation in the HbO2 tetramer. The next role was suggested by our studies searching for similar phenomena in normal human erythrocytes under mild heating. Tilting of the distal (E7) His in turn triggered degradation of the Hb molecule to hemichrome, and subsequent clustering of Heinz bodies within the erythrocyte. As Heinz body-containing red cells become trapped in the spleen, it was demonstrated that the α1–β1 (and α2–β2) interface may exert delicate control of the fate (removal) of its own erythrocyte. Herein we review and summarize the related results and current interpretation of the oxidative behavior of human Hb, emphasizing the correlation between hemichrome emergence and Heinz-body formation, and specifically discuss the new roles assigned to the α1–β1 (and α2–β2) interface. The α1–β1 (and α2–β2) interface seems to adequately differentiate between the two types of function (dual roles) from physiological to cellular.
Keywords: hemoglobin; α1–β1 (and α2–β2) interface; pH-dependent biphasic autoxidation; temperature-dependent hemichrome formation; Heinz-body clustering

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Sugawara, Y.; Yamada, M.; Ueno, E.; Okazaki, M.; Okamoto, A.; Miyake, M.; Fukami, F.; Yano, A. New Roles Assigned to the α1–β1 (and α2–β2) Interface of the Human Hemoglobin Molecule from Physiological to Cellular. Appl. Sci. 2011, 1, 13-55.

AMA Style

Sugawara Y, Yamada M, Ueno E, Okazaki M, Okamoto A, Miyake M, Fukami F, Yano A. New Roles Assigned to the α1–β1 (and α2–β2) Interface of the Human Hemoglobin Molecule from Physiological to Cellular. Applied Sciences. 2011; 1(1):13-55.

Chicago/Turabian Style

Sugawara, Yoshiaki; Yamada, Mai; Ueno, Eriko; Okazaki, Mai; Okamoto, Aya; Miyake, Mariko; Fukami, Fusako; Yano, Ai. 2011. "New Roles Assigned to the α1–β1 (and α2–β2) Interface of the Human Hemoglobin Molecule from Physiological to Cellular." Appl. Sci. 1, no. 1: 13-55.

Appl. Sci. EISSN 2076-3417 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert