Next Article in Journal
Low Field Magnetic and Thermal Hysteresis in Antiferromagnetic Dysprosium
Next Article in Special Issue
TiO2 Nanotubes on Ti Dental Implant. Part 2: EIS Characterization in Hank’s Solution
Previous Article in Journal
Kinetics of Roasting Decomposition of the Rare Earth Elements by CaO and Coal
Previous Article in Special Issue
Investigation of the Effectiveness of Dental Implant Osseointegration Characterized by Different Surface Types
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Metals 2017, 7(6), 214; doi:10.3390/met7060214

Preparation and Characterization of Aminated Hydroxyethyl Cellulose-Induced Biomimetic Hydroxyapatite Coatings on the AZ31 Magnesium Alloy

1
School of Stomatology, Lanzhou University, Lanzhou 730000, China
2
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
*
Author to whom correspondence should be addressed.
Received: 13 April 2017 / Revised: 15 May 2017 / Accepted: 6 June 2017 / Published: 8 June 2017
View Full-Text   |   Download PDF [6326 KB, uploaded 9 June 2017]   |  

Abstract

The purpose of this work is to improve the cytocompatibility and corrosion resistance of magnesium alloy in the hope of preparing a biodegradable medical material. The aminated hydroxyethyl cellulose-induced biomimetic hydroxyapatite coating was successfully prepared on AZ31 magnesium alloy surface with a sol-gel spin coating method and biomimetic mineralization. Potentiodynamic polarization tests and electrochemical impedance spectroscopy showed that the hydroxyapatite/aminated hydroxyethyl cellulose (HA/AHEC) coating can greatly improve the corrosion resistance of AZ31 magnesium alloy and reduce the degradation speed in simulated body fluid (SBF). The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium bromide] method and cell morphology observation results showed that the HA/AHEC coating on AZ31 magnesium alloy has excellent cytocompatibility and biological activity. View Full-Text
Keywords: biomaterials; corrosion; coatings; aminated hydroxyethyl cellulose; magnesium alloy; hydroxyapatite; cytotoxicity biomaterials; corrosion; coatings; aminated hydroxyethyl cellulose; magnesium alloy; hydroxyapatite; cytotoxicity
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zhu, B.; Xu, Y.; Sun, J.; Yang, L.; Guo, C.; Liang, J.; Cao, B. Preparation and Characterization of Aminated Hydroxyethyl Cellulose-Induced Biomimetic Hydroxyapatite Coatings on the AZ31 Magnesium Alloy. Metals 2017, 7, 214.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Metals EISSN 2075-4701 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top