Previous Issue
Volume 12, April
 
 

Galaxies, Volume 12, Issue 3 (June 2024) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 2825 KiB  
Article
Flattened Galaxy Rotation Curves in the Exochronous Metric
by Robin Booth
Galaxies 2024, 12(3), 21; https://doi.org/10.3390/galaxies12030021 - 24 Apr 2024
Viewed by 280
Abstract
We examine some of the consequences of the Exochronous (timeless) metric and the associated ΣGR cosmological model for the formation of galaxies, and, in particular, their characteristic rotation curves. We show how the cumulative curvature from the multiple spatial hypersurfaces in this [...] Read more.
We examine some of the consequences of the Exochronous (timeless) metric and the associated ΣGR cosmological model for the formation of galaxies, and, in particular, their characteristic rotation curves. We show how the cumulative curvature from the multiple spatial hypersurfaces in this model leads to a modified version of the Poisson equation, in which the gravitational potential is computed over 4D space. Using this new form of the Poisson equation, we derive an analytic expression for gravitational potential as a function of radial distance for a uniform gas cloud undergoing gravitational collapse. We show that this results in a radial velocity profile that provides an excellent fit with commonly observed galaxy rotation curves, and hence fully accounts for the effects previously ascribed to dark matter. An expression can be derived for the equivalent matter density profile corresponding to the ΣGR gravitational potential, from which it is evident that this is very similar in form to the well-known Navarro–Frenk–White profile. As a further illustration of the consequences of adopting the Exochronous metric, we show how the principle can readily be incorporated into particle-mesh N-body simulations of large-scale structure evolution, using a relaxation solver for the solution to the Poisson equation and the evolution of the gravitational potential. Examples of the use of this simulation model are shown for the following cases: (a) the initial evolution of a large-scale structure, and (b) galaxy formation from a gravitationally collapsing gas cloud. In both cases, it is possible to directly visualise the build-up of the gravitational potential in 3D space as the simulation evolves and note how this corresponds to what is currently assumed to be dark matter. Full article
Show Figures

Figure 1

16 pages, 1306 KiB  
Review
Investigating the Properties of the Relativistic Jet and Hot Corona in AGN with X-ray Polarimetry
by Dawoon E. Kim, Laura Di Gesu, Frédéric Marin, Alan P. Marscher, Giorgio Matt, Paolo Soffitta, Francesco Tombesi, Enrico Costa and Immacolata Donnarumma
Galaxies 2024, 12(3), 20; https://doi.org/10.3390/galaxies12030020 - 23 Apr 2024
Viewed by 292
Abstract
X-ray polarimetry has been suggested as a prominent tool for investigating the geometrical and physical properties of the emissions from active galactic nuclei (AGN). The successful launch of the Imaging X-ray Polarimetry Explorer (IXPE) on 9 December 2021 has expanded the previously restricted [...] Read more.
X-ray polarimetry has been suggested as a prominent tool for investigating the geometrical and physical properties of the emissions from active galactic nuclei (AGN). The successful launch of the Imaging X-ray Polarimetry Explorer (IXPE) on 9 December 2021 has expanded the previously restricted scope of polarimetry into the X-ray domain, enabling X-ray polarimetric studies of AGN. Over a span of two years, IXPE has observed various AGN populations, including blazars and radio-quiet AGN. In this paper, we summarize the remarkable discoveries achieved thanks to the opening of the new window of X-ray polarimetry of AGN through IXPE observations. We will delve into two primary areas of interest: first, the magnetic field geometry and particle acceleration mechanisms in the jets of radio-loud AGN, such as blazars, where the relativistic acceleration process dominates the spectral energy distribution; and second, the geometry of the hot corona in radio-quiet AGN. Thus far, the IXPE results from blazars favor the energy-stratified shock acceleration model, and they provide evidence of helical magnetic fields inside the jet. Concerning the corona geometry, the IXPE results are consistent with a disk-originated slab-like or wedge-like shape, as could result from Comptonization around the accretion disk. Full article
(This article belongs to the Special Issue Multi-Phase Fueling and Feedback Processes in Jetted AGN)
Show Figures

Figure 1

Previous Issue
Back to TopTop