Next Article in Journal
A microRNA Link to Glioblastoma Heterogeneity
Next Article in Special Issue
Therapeutic Targeting of Hyaluronan in the Tumor Stroma
Previous Article in Journal
Succinate Dehydrogenase B Subunit Immunohistochemical Expression Predicts Aggressiveness in Well Differentiated Neuroendocrine Tumors of the Ileum
Previous Article in Special Issue
Ovarian Cancer Stroma: Pathophysiology and the Roles in Cancer Development
Cancers 2012, 4(3), 821-845; doi:10.3390/cancers4030821

Characterization of the Tumor-Microenvironment in Patient-Derived Cervix Xenografts (OCICx)

Received: 16 July 2012 / Revised: 17 August 2012 / Accepted: 21 August 2012 / Published: 29 August 2012
(This article belongs to the Special Issue Tumor Stroma)
View Full-Text   |   Download PDF [2491 KB, uploaded 29 August 2012]   |   Browse Figures


Rationale: The tumor microenvironment (TME) is heterogeneous including both malignant and host cell components as well as regions of hypoxia, elevated interstitial fluid pressure (IFP) and poor nutrient supply. The quantitative extent to which the microenvironmental properties of primary tumors are recapitulated in xenograft models is not well characterized. Methods: Xenografts were generated by implanting tumor biopsies directly into the cervix of mice to create a panel of orthotopically-passaged xenografts (OCICx). Tumors were grown to ~1 cm (diameter) and IFP measurements recorded prior to sacrifice. Enlarged para-aortic lymph nodes (>1–2 mm) were excised for histologic confirmation of metastatic disease. Quantitative histological analysis was used to evaluate hypoxia, proliferation, lymphatic and blood vessels in the epithelial and stromal regions of the xenografts and original patient tumour. Results: IFP and nodal disease were not correlated with tumor engraftment. IFP measurements in the xenografts were generally lower than those in the patient’s tumor. Lymphatic metastasis increased with passage number as did levels of hypoxia in the epithelial component of the xenografts. The blood vessel density in the stromal component of the xenografts increased in parallel. When all the markers were compared between the biopsy and the respective 3rd generation xenograft 10 of 11 tumors showed a good correlation. Conclusions: This ongoing study provides characterization about tumoral and stromal heterogeneity in a unique orthotopic xenograft model.
Keywords: cervix cancer; stroma; patient-derived cervix xenograft; hypoxia; tumor microenvironment cervix cancer; stroma; patient-derived cervix xenograft; hypoxia; tumor microenvironment
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
MDPI and ACS Style

Chaudary, N.; Pintilie, M.; Schwock, J.; Dhani, N.; Clarke, B.; Milosevic, M.; Fyles, A.; Hill, R.P. Characterization of the Tumor-Microenvironment in Patient-Derived Cervix Xenografts (OCICx). Cancers 2012, 4, 821-845.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here


Cited By

[Return to top]
Cancers EISSN 2072-6694 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert