Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Biochemical Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Wong, N.D. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat. Rev. Cardiol. 2014, 11, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Narain, J.P.; Garg, R.; Fric, A. Non-communicable diseases in the South-East Asia region: Burden, strategies and opportunities. Natl. Med. J. India 2011, 24, 280–287. [Google Scholar] [PubMed]
- Dhalla, N.S.; Temsah, R.M.; Netticadan, T. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 2000, 18, 655–673. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, P. Oxidized LDL and coronary heart disease. Acta Cardiol. 2004, 59, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Black, P.H.; Garbutt, L.D. Stress, inflammation and cardiovascular disease. J. Psychosom. Res. 2002, 52, 1–23. [Google Scholar] [CrossRef]
- Lu, L.; Sun, R.; Liu, M.; Zheng, Y.; Zhang, P. The Inflammatory heart diseases: Causes, symptoms, and treatments. Cell Biochem. Biophys. 2015, 72, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, G.; Fang, J.; Mercado, C. Hyperlipidemia and medical expenditures by cardiovascular disease status in US adults. Med. Care 2017, 55, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Tarride, J.E.; Lim, M.; DesMeules, M.; Luo, W.; Burke, N.; O’Reilly, D.; Bowen, J.; Goeree, R. A review of the cost of cardiovascular disease. Can. J. Cardiol. 2009, 25, e195–e202. [Google Scholar] [CrossRef]
- Stewart, J.; Manmathan, G.; Wilkinson, P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc. Dis. 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Buttar, H.S.; Li, T.; Ravi, N. Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. Exp. Clin. Cardiol. 2005, 10, 229–249. [Google Scholar] [PubMed]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Zavoshy, R.; Noroozi, M.; Jahanihashemi, H. Effect of low calorie diet with rice bran oil on cardiovascular risk factors in hyperlipidemic patients. J. Res. Med. Sci. 2012, 17, 626–631. [Google Scholar] [PubMed]
- Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 2007, 40, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Basak, P.; Dutta, S.; Chowdhury, S.; Sil, P.C. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem. Toxicol. 2017, 103, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Adisakwattana, S. Cinnamic acid and its derivatives: Mechanisms for prevention and management of diabetes and its complications. Nutrients 2017, 9, 163. [Google Scholar] [CrossRef] [PubMed]
- Sudheer, A.R.; Muthukumaran, S.; Kalpana, C.; Srinivasan, M.; Menon, V.P. Protective effect of ferulic acid on nicotine-induced DNA damage and cellular changes in cultured rat peripheral blood lymphocytes: A comparison with N-acetylcysteine. Toxicol. In Vitro 2007, 21, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaragoud, G.; Rajath, S.; Mahendra, V.; Kumar, G.S.; Krishna, A.G.; Kumar, G.S. Hypolipidemic mechanism of oryzanol components-ferulic acid and phytosterols. Biochem. Biophys. Res. Commun. 2016, 476, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.H.; Lee, Y.T.; Hsieh, H.S.; Hwang, D.F. Dietary caffeic acid, ferulic acid and coumaric acid supplements on cholesterol metabolism and antioxidant activity in rats. J. Food Drug Anal. 2009, 17, 123–132. [Google Scholar]
- Duxbury, M. An enzymatic clinical chemistry laboratory experiment incorporating an introduction to mathematical method comparison techniques. Biochem. Mol. Biol. Educ. 2004, 32, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Thongoun, P.; Pavadhgul, P.; Bumrungpert, A.; Satitvipawee, P.; Harjani, Y.; Kurilich, A. Effect of oat consumption on lipid profiles in hypercholesterolemic adults. J. Med. Assoc. Thai. 2013, 96, S25–S32. [Google Scholar] [PubMed]
- Kim, J.H.; Baik, H.W.; Yoon, Y.S.; Joung, H.J.; Park, J.S.; Park, S.J.; Jang, E.J.; Park, S.W.; Kim, S.J.; Kim, M.J.; et al. Measurement of antioxidant capacity using the biological antioxidant potential test and its role as a predictive marker of metabolic syndrome. Korean J. Intern. Med. 2014, 29, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, Y.; Kujiraoka, T.; Hakuno, D.; Masaki, N.; Tokuno, S.; Adachi, T. Elevation of derivatives of reactive oxygen metabolites elevated in young “disaster responders” in hypertension due to great east japan earthquake. Int. Heart J. 2016, 57, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.L.; Shi, Y.H.; Hao, G.; Li, W.; Le, G.W. Increasing oxidative stress with progressive hyperlipidemia in human: Relation between malondialdehyde and atherogenic index. J. Clin. Biochem. Nutr. 2008, 43, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Phuntuwate, W.; Suthisisang, C.; Koanantakul, B.; Chaloeiphap, P.; Mackness, B.; Mackness, M. Effect of fenofibrate therapy on paraoxonase1 status in patients with low HDL-C levels. Atherosclerosis 2008, 196, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, Y.; Hirayama, S.; Soda, S.; Seino, U.; Kon, M.; Ueno, T.; Idei, M.; Hanyu, O.; Tsuda, T.; Ohmura, H.; et al. Statin therapy reduces inflammatory markers in hypercholesterolemic patients with high baseline levels. J. Atheroscler. Thromb. 2010, 17, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Bumrungpert, A.; Pavadhgul, P.; Kalpravidh, R.W. Camellia-oil enriched diet attenuates oxidative stress and inflammatory markers in hypercholesterolemic subjects. J. Med. Food 2016, 19, 895–898. [Google Scholar] [CrossRef] [PubMed]
- Naowaboot, J.; Piyabhan, P.; Munkong, N.; Parklak, W.; Pannangpetch, P. Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice. Clin. Exp. Pharmacol. Physiol. 2016, 43, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Monagas, M.; Andres-Lacueva, C.; Casas, R.; Urpí-Sardà, M.; Lamuela-Raventós, R.M.; Estruch, R. Regular consumption of cocoa powder with milk increases HDL cholesterol and reduces oxidized LDL levels in subjects at high-risk of cardiovascular disease. Nutr. Metab. Cardiovasc. 2012, 22, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Frank, P.G.; Marcel, Y.L. Apolipoprotein AI: Structure–function relationships. J. Lipid. Res. 2000, 41, 853–872. [Google Scholar] [PubMed]
- Burke, M.F.; Khera, A.V.; Rader, D.J. Polyphenols and cholesterol efflux: Is coffee the next red wine? Circ. Res. 2010, 106, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Adorni, M.P.; Zimetti, F.; Billheimer, J.T. The roles of different pathways in the release of cholesterol from macrophages. J. Lipid. Res. 2007, 48, 2453–2462. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhang, I.; Li, A.; Manson, J.E.; Sesso, H.D.; Wang, L.; Liu, S. Cocoa flavanol intake and biomarkers for cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. J. Nutr. 2016, 146, 2325–2333. [Google Scholar] [CrossRef] [PubMed]
- Asano, T.; Matsuzaki, H.; Iwata, N.; Xuan, M.; Kamiuchi, S.; Hibino, Y.; Sakamoto, T.; Okazaki, M. Protective effects of ferulic acid against chronic cerebral hypoperfusion-induced swallowing dysfunction in rats. Int. J. Mol. Sci. 2017, 18, 550. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.Y.; Do, G.M.; Cho, Y.Y.; Park, Y.B.; Jeon, S.M.; Choi, M.S. Anti-atherogenic property of ferulic acid in apolipoprotein E-deficient mice fed western diet: Comparison with clofibrate. Food Chem. Toxicol. 2010, 48, 2298–2303. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.J.; Zhang, Y.M.; Qi, J.P.; Liu, R.; Zhang, H.; He, L.C. Ferulic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-κB pathway. Int. Immunopharmacol. 2015, 28, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.M.; Shen, J.D.; Xu, L.P.; Li, H.B.; Li, Y.C.; Yi, L.T. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress. Int. Immunopharmacol. 2017, 45, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ternero, C.; Werner, C.M.; Nickel, A.G.; Herrera, M.D.; Motilva, M.J.; Böhm, M.; Alvarez de Sotomayor, M.; Laufs, U. Ferulic acid, a bioactive component of rice bran, improves oxidative stress and mitochondrial biogenesis and dynamics in mice and in human mononuclear cells. J. Nutr. Biochem. 2017, 48, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Nhung, B.T.; Tuyen, L.D.; Linh, V.A.; Anh, N.D.; Nga, T.T.; Thuc, V.T.; Yui, K.; Ito, Y.; Nakashima, Y.; Yamamoto, S. Rice bran extract reduces the risk of atherosclerosis in post-menopausal vietnamese women. J. Nutr. Sci. Vitaminol. 2016, 62, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ternero, C.; Macia, A.; de Sotomayor, M.A.; Parrado, J.; Motilva, M.J.; Herrera, M.D. Bioavailability of the ferulic acid-derived phenolic compounds of a rice bran enzymatic extract and their activity against superoxide production. Food Funct. 2017, 8, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Vinson, J.A.; Cai, Y. Nuts, especially walnuts, have both antioxidant quantity and efficacy and exhibit significant potential health benefits. Food Funct. 2012, 3, 134–140. [Google Scholar] [CrossRef] [PubMed]
Parameters | Placebo | Ferulic Acid | P1 | P2 | ||
---|---|---|---|---|---|---|
Baseline | 6 Week | Baseline | 6 Week | |||
Age (years) | 45.88 ± 7.84 | - | 48.71 ± 7.55 | - | 0.209 | |
Sex (n) | ||||||
-Male | 3 | 3 | 3 | 3 | ||
-Female | 21 | 21 | 21 | 21 | ||
Weight (kg) | 65.32 ± 19.25 | 65.24 ± 19.53 | 64.37 ± 15.87 | 64.34 ± 16.06 | 0.852 | 0.863 |
Body Mass Index (kg/m2) | 26.58 ± 6.20 | 26.54 ± 6.29 | 25.88 ± 5.31 | 25.86 ± 5.36 | 0.676 | 0.689 |
Waist circumference (cm) | 88.80 ± 11.48 | 88.52 ± 11.43 | 87.99 ± 10.54 | 87.72 ± 11.03 | 0.800 | 0.805 |
Body fat (%) | 33.84 ± 5.89 | 33.43 ± 6.31 | 34.95 ± 3.97 | 34.32 ± 4.18 | 0.445 | 0.567 |
Blood pressure (mm Hg) | ||||||
-Systolic | 123.04 ± 19.06 | 117.83 ± 14.25 | 123.17 ± 17.3 | 123.08 ± 15.36 | 0.981 | 0.226 |
-Diastolic | 80.38 ± 11.29 | 77.08 ± 12.53 | 80.29 ± 10.16 | 77.04 ± 10.09 | 0.979 | 0.990 |
Glucose (mg/dL) | 88.58 ± 7.76 | 85.63 ± 7.73 | 84.96 ± 8.01 | 82.79 ± 8.72 | 0.118 | 0.240 |
ALT (U/L) | 18.67 ± 4.80 | 18.08 ± 4.47 | 18.42 ± 5.39 | 18.67 ± 5.50 | 0.866 | 0.689 |
AST (U/L) | 22.00 ± 6.65 | 21.67 ± 6.81 | 21.46 ± 5.29 | 20.17 ± 4.99 | 0.756 | 0.389 |
Creatinine (mg/dL) | 0.77 ± 0.11 | 0.78 ± 0.12 | 0.75 ± 0.13 | 0.74 ± 0.13 | 0.491 | 0.330 |
Dietary Assessment | Placebo | Ferulic Acid | P1 | P2 | ||
---|---|---|---|---|---|---|
Baseline | 6 Week | Baseline | 6 Week | |||
Energy (kcal/day) | 1914 ± 476 | 1878 ± 399 | 1854 ± 519 | 1866 ± 503 | 0.704 | 0.931 |
Carbohydrate (% of energy) | 56.74 ± 9.53 | 55.87 ± 7.67 | 55.41 ± 9.71 | 54.77 ± 7.90 | 0.665 | 0.659 |
Protein (% of energy) | 15.17 ± 4.79 | 14.61 ± 4.53 | 16.37 ± 5.20 | 16.50 ± 5.11 | 0.455 | 0.223 |
Fat (% of energy) | 28.09 ± 6.82 | 29.52 ± 5.62 | 28.22 ± 6.70 | 28.73 ± 4.79 | 0.949 | 0.639 |
Cholesterol (mg/day) | 335.60 ± 126.03 | 351.47 ± 134.98 | 356.98 ± 110.60 | 330.54 ± 97.86 | 0.564 | 0.572 |
Fiber (g/day) | 10.44 ± 6.14 | 10.17 ± 6.74 | 9.27 ± 6.29 | 10.22 ± 7.99 | 0.558 | 0.981 |
Biomarkers | Placebo | Ferulic Acid | pb | ||||
---|---|---|---|---|---|---|---|
Baseline a | 6 Week | Change (%) | Baseline a | 6 Week | Change (%) | ||
Lipid profiles | |||||||
TC (mg/dL) | 250.83 ± 32.16 | 245 ± 34.4 | −2.17 ± 6.71 | 254.35 ± 33.65 | 233 ± 26.26 | −8.07 ± 4.56 | 0.001 |
TG (mg/dL) | 131.5 ± 72.04 | 122.04 ± 56.47 | −0.41 ± 27.85 | 136.96 ± 59.45 | 120.22 ± 54.02 | −12.12 ± 7.95 | 0.049 |
LDL-C (mg/dL) | 167.17 ± 27.61 | 164 ± 28.72 | −1.69 ± 6.72 | 172.74 ± 30.17 | 155.91 ± 23.73 | −9.32 ± 4.82 | <0.001 |
HDL-C (mg/dL) | 55.58 ± 13.07 | 54.71 ± 12.76 | −0.94 ± 9.13 | 51.52 ± 8.82 | 53.39 ± 7.95 | 4.32 ± 8.96 | 0.045 |
Oxidative stress markers | |||||||
BAP (μmol/L) | 2896.33 ± 256.25 | 2802.21 ± 222.57 | −2.75 ± 9.32 | 2930.36 ± 345.14 | 3266.95 ± 386.57 | 11.83 ± 9.5 | <0.001 |
d-ROMs (CARR U) | 323.25 ± 47.9 | 332.88 ± 56.13 | 2.98 ± 8.97 | 358.32 ± 75.91 | 315.45 ± 63.98 | −11.72 ± 5.48 | <0.001 |
MDA (nmol/L) | 1092.29 ± 228.41 | 1015.67 ± 201.56 | −6.62 ± 7.3 | 1155.5 ± 229.52 | 862.45 ± 166.96 | −24.46 ± 10.8 | <0.001 |
Oxidized LDL-C (U/L) | 57.48 ± 5.43 | 56.12 ± 5.47 | −2.22 ± 5.93 | 59.23 ± 3.69 | 54.98 ± 2.97 | −7.05 ± 4.37 | 0.002 |
Inflammatory markers | |||||||
hs-CRP (mg/L) | 2.74 ± 1.96 | 3.27 ± 2.48 | 25.18 ± 54.89 | 2.94 ± 1.85 | 1.82 ± 0.82 | −32.66 ± 20.91 | <0.001 |
TNF-α (pg/mL) | 42.92 ± 24.62 | 46.95 ± 24.63 | 12.75 ± 15.28 | 44.22 ± 21.14 | 38.95 ± 20.09 | −13.06 ± 6.92 | <0.001 |
IL-6 (pg/mL) | ND | ND | ND | ND | ND | ND | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bumrungpert, A.; Lilitchan, S.; Tuntipopipat, S.; Tirawanchai, N.; Komindr, S. Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2018, 10, 713. https://doi.org/10.3390/nu10060713
Bumrungpert A, Lilitchan S, Tuntipopipat S, Tirawanchai N, Komindr S. Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients. 2018; 10(6):713. https://doi.org/10.3390/nu10060713
Chicago/Turabian StyleBumrungpert, Akkarach, Supathra Lilitchan, Siriporn Tuntipopipat, Nednapis Tirawanchai, and Surat Komindr. 2018. "Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial" Nutrients 10, no. 6: 713. https://doi.org/10.3390/nu10060713
APA StyleBumrungpert, A., Lilitchan, S., Tuntipopipat, S., Tirawanchai, N., & Komindr, S. (2018). Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients, 10(6), 713. https://doi.org/10.3390/nu10060713