Next Article in Journal
Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases
Next Article in Special Issue
Production of Porous β-Type Ti–40Nb Alloy for Biomedical Applications: Comparison of Selective Laser Melting and Hot Pressing
Previous Article in Journal
The Effect of Exogenous Zinc Concentration on the Responsiveness of MC3T3-E1 Pre-Osteoblasts to Surface Microtopography: Part I (Migration)
Previous Article in Special Issue
Comparative Analysis of the Oxygen Supply and Viability of Human Osteoblasts in Three-Dimensional Titanium Scaffolds Produced by Laser-Beam or Electron-Beam Melting
Materials 2013, 6(12), 5533-5548; doi:10.3390/ma6125533
Article

Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response

1
, 1
, 2
, 2
, 3
, 3
, 1
, 4
 and 1,*
1 BIOMAT Research Cluster, Department of Oral Health Sciences and Prosthetic Dentistry, KU Leuven and University Hospitals Leuven, Kapucijnenvoer 7 box 7001, Leuven 3000, Belgium 2 Department of Metallurgy and Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 box 2450, Heverlee 3001, Belgium 3 Laboratory of Bioengineering and Biomechanics for Bone Articulation, Faculty of Medicine, University Paris Diderot, 10 Avenue de Verdun, Paris 75010, France 4 Center of Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg 23 box 2461, Heverlee 3001, Belgium
* Author to whom correspondence should be addressed.
Received: 24 October 2013 / Revised: 7 November 2013 / Accepted: 25 November 2013 / Published: 28 November 2013
(This article belongs to the Special Issue Titanium Materials for Biomedical Application 2013)
Download PDF [540 KB, uploaded 28 November 2013]

Abstract

Surface modification of titanium implants is used to enhance osseointegration. The study objective was to evaluate five modified titanium surfaces in terms of cytocompatibility and pro-osteogenic/pro-angiogenic properties for human mesenchymal stromal cells: amorphous microporous silica (AMS), bone morphogenetic protein-2 immobilized on AMS (AMS + BMP), bio-active glass (BAG) and two titanium coatings with different porosity (T1; T2). Four surfaces served as controls: uncoated Ti (Ti), Ti functionalized with BMP-2 (Ti + BMP), Ti surface with a thickened titanium oxide layer (TiO2) and a tissue culture polystyrene surface (TCPS). The proliferation of eGFP-fLuc (enhanced green fluorescence protein-firefly luciferase) transfected cells was tracked non-invasively by fluorescence microscopy and bio-luminescence imaging. The implant surface-mediated effects on cell differentiation potential was tracked by determination of osteogenic and angiogenic parameters [alkaline phosphatase (ALP); osteocalcin (OC); osteoprotegerin (OPG); vascular endothelial growth factor-A (VEGF-A)]. Unrestrained cell proliferation was observed on (un)functionalized Ti and AMS surfaces, whereas BAG and porous titanium coatings T1 and T2 did not support cell proliferation. An important pro-osteogenic and pro-angiogenic potential of the AMS + BMP surface was observed. In contrast, coating the Ti surface with BMP did not affect the osteogenic differentiation of the progenitor cells. A significantly slower BMP-2 release from AMS compared to Ti supports these findings. In the unfunctionalized state, Ti was found to be superior to AMS in terms of OPG and VEGF-A production. AMS is suggested to be a promising implant coating material for bioactive agents delivery.
Keywords: titanium; surface coating; human bone marrow stromal cells; in vitro cytocompatibility; osteogenic differentiation; osseointegration titanium; surface coating; human bone marrow stromal cells; in vitro cytocompatibility; osteogenic differentiation; osseointegration
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Export to BibTeX |
EndNote


MDPI and ACS Style

Chaudhari, A.; Duyck, J.; Braem, A.; Vleugels, J.; Petite, H.; Logeart-Avramoglou, D.; Naert, I.; Martens, J.A.; Vandamme, K. Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response. Materials 2013, 6, 5533-5548.

View more citation formats

Supplement

Article Metrics

Comments

Citing Articles

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert