Materials 2013, 6(12), 5533-5548; doi:10.3390/ma6125533

Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response

1email, 1email, 2email, 2email, 3email, 3email, 1email, 4email and 1,* email
Received: 24 October 2013; in revised form: 7 November 2013 / Accepted: 25 November 2013 / Published: 28 November 2013
(This article belongs to the Special Issue Titanium Materials for Biomedical Application 2013)
Download PDF [540 KB, uploaded 28 November 2013]
Abstract: Surface modification of titanium implants is used to enhance osseointegration. The study objective was to evaluate five modified titanium surfaces in terms of cytocompatibility and pro-osteogenic/pro-angiogenic properties for human mesenchymal stromal cells: amorphous microporous silica (AMS), bone morphogenetic protein-2 immobilized on AMS (AMS + BMP), bio-active glass (BAG) and two titanium coatings with different porosity (T1; T2). Four surfaces served as controls: uncoated Ti (Ti), Ti functionalized with BMP-2 (Ti + BMP), Ti surface with a thickened titanium oxide layer (TiO2) and a tissue culture polystyrene surface (TCPS). The proliferation of eGFP-fLuc (enhanced green fluorescence protein-firefly luciferase) transfected cells was tracked non-invasively by fluorescence microscopy and bio-luminescence imaging. The implant surface-mediated effects on cell differentiation potential was tracked by determination of osteogenic and angiogenic parameters [alkaline phosphatase (ALP); osteocalcin (OC); osteoprotegerin (OPG); vascular endothelial growth factor-A (VEGF-A)]. Unrestrained cell proliferation was observed on (un)functionalized Ti and AMS surfaces, whereas BAG and porous titanium coatings T1 and T2 did not support cell proliferation. An important pro-osteogenic and pro-angiogenic potential of the AMS + BMP surface was observed. In contrast, coating the Ti surface with BMP did not affect the osteogenic differentiation of the progenitor cells. A significantly slower BMP-2 release from AMS compared to Ti supports these findings. In the unfunctionalized state, Ti was found to be superior to AMS in terms of OPG and VEGF-A production. AMS is suggested to be a promising implant coating material for bioactive agents delivery.
Keywords: titanium; surface coating; human bone marrow stromal cells; in vitro cytocompatibility; osteogenic differentiation; osseointegration
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |

MDPI and ACS Style

Chaudhari, A.; Duyck, J.; Braem, A.; Vleugels, J.; Petite, H.; Logeart-Avramoglou, D.; Naert, I.; Martens, J.A.; Vandamme, K. Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response. Materials 2013, 6, 5533-5548.

AMA Style

Chaudhari A, Duyck J, Braem A, Vleugels J, Petite H, Logeart-Avramoglou D, Naert I, Martens JA, Vandamme K. Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response. Materials. 2013; 6(12):5533-5548.

Chicago/Turabian Style

Chaudhari, Amol; Duyck, Joke; Braem, Annabel; Vleugels, Jozef; Petite, Hervé; Logeart-Avramoglou, Delphine; Naert, Ignace; Martens, Johan A.; Vandamme, Katleen. 2013. "Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response." Materials 6, no. 12: 5533-5548.

Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert