Dietary Nickel Chloride Induces Oxidative Intestinal Damage in Broilers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chickens and Diets
2.2. Detection of Oxidative Damage Parameters in the Intestinal Mucosa
2.3. Statistical Analysis
3. Results
3.1. Changes of the SOD Activities
Days | Groups | Duodenum | Jejunum | Ileum |
---|---|---|---|---|
14 Days | Control group | 78.61 ± 3.37 | 68.77 ± 2.86 | 63.60 ± 2.73 |
300 mg/kg group | 76.91 ± 3.60 | 65.60 ± 2.30 | 62.90 ± 2.38 | |
600 mg/kg group | 73.38 ± 4.34 | 67.45 ± 2.80 | 61.72 ± 2.72 | |
900 mg/kg group | 72.16 ± 2.67 * | 63.97 ± 5.51 | 59.52 ± 2.14 * | |
28 Days | Control group | 76.18 ± 4.69 | 67.00 ± 4.37 | 67.76 ± 3.71 |
300 mg/kg group | 72.10 ± 5.06 | 61.66 ± 3.19 * | 62.80 ± 2.85 * | |
600 mg/kg group | 63.24 ± 5.89 ** | 59.33 ± 4.56 ** | 60.62 ± 3.82 ** | |
900 mg/kg group | 63.24 ± 5.89 ** | 52.50 ± 4.31 ** | 59.60 ± 2.05 ** | |
42 Days | Control group | 76.75 ± 4.06 | 66.94 ± 3.49 | 70.90 ± 4.56 |
300 mg/kg group | 69.07 ± 2.29 * | 60.65 ± 4.63 * | 62.73 ± 3.38 ** | |
600 mg/kg group | 63.29 ± 3.28 ** | 58.63 ± 3.23 ** | 61.47 ± 3.08 ** | |
900 mg/kg group | 64.47 ± 6.84 ** | 52.32 ± 3.20 ** | 56.67 ± 3.75 ** |
3.2. Changes of the CAT Activities
Days | Groups | Duodenum | Jejunum | Ileum |
---|---|---|---|---|
14 Days | Control group | 494.59 ± 14.43 | 467.09 ± 17.61 | 354.34 ± 15.94 |
300 mg/kg group | 492.29 ± 18.40 | 459.79 ± 15.82 | 350.79 ± 25.61 | |
600 mg/kg group | 484.78 ± 23.97 | 457.28 ± 16.31 * | 346.78 ± 16.66 | |
900 mg/kg group | 481.46 ± 17.76 * | 454.79 ± 14.18 * | 343.54 ± 23.89 * | |
28 Days | Control group | 479.96 ± 10.82 | 459.96 ± 10.82 | 348.71 ± 18.33 |
300 mg/kg group | 468.36 ± 23.60 * | 448.36±13.60* | 337.61 ± 15.36 * | |
600 mg/kg group | 467.73 ± 17.34 * | 447.73 ± 27.34 * | 334.73 ± 9.08 * | |
900 mg/kg group | 460.43 ± 14.50 ** | 440.43 ± 14.50 ** | 330.43 ± 14.50 ** | |
42 Days | Control group | 470.29 ± 10.04 | 455.29 ± 15.20 | 345.79 ± 16.43 |
300 mg/kg group | 454.18 ± 14.32 ** | 441.68 ± 13.75 ** | 331.18 ± 24.27 ** | |
600 mg/kg group | 452.56 ± 23.24 ** | 437.56 ± 18.80 ** | 326.06 ± 19.22 ** | |
900 mg/kg group | 445.75 ± 15.68 ** | 428.25 ± 22.79 ** | 317.75 ± 13.53 ** |
3.3. Changes of the GSH-Px Activities
Days | Groups | Duodenum | Jejunum | Ileum |
---|---|---|---|---|
14 Days | Control group | 427.83 ± 26.22 | 453.03 ± 50.07 | 330.44 ± 11.33 |
300 mg/kg group | 403.37 ± 24.81 | 419.59 ± 34.27 | 301.11 ± 41.15 | |
600 mg/kg group | 372.82 ± 41.02 * | 410.53 ± 27.16 | 289.89 ± 39.75 | |
900 mg/kg group | 367.35 ± 34.10 * | 404.86 ± 48.18 | 271.08 ± 36.61 * | |
28 Days | Control group | 485.80 ± 24.83 | 422.94 ± 29.34 | 351.25 ± 26.56 |
300 mg/kg group | 432.76 ± 28.56 * | 408.76 ± 39.64 | 311.25 ± 12.57 * | |
600 mg/kg group | 387.15 ± 38.39 ** | 367.17 ± 22.39 * | 302.67 ± 21.87 * | |
900 mg/kg group | 355.06 ± 39.78 ** | 369.78 ± 26.99 * | 257.06 ± 27.08 ** | |
42 Days | Control group | 431.78 ± 31.36 | 394.57 ± 15.91 | 351.91 ± 14.85 |
300 mg/kg group | 378.48 ± 11.26 ** | 340.17 ± 32.96 * | 323.75 ± 4.59 ** | |
600 mg/kg group | 358.28 ± 12.68 ** | 354.04 ± 23.11 * | 315.49 ± 17.34 ** | |
900 mg/kg group | 340.31 ± 15.21 ** | 336.79 ± 30.07 ** | 300.50 ± 11.05 ** |
3.4. Changes of the Abilities to Inhibit Hydroxy Radical
Days | Groups | Duodenum | Jejunum | Ileum |
---|---|---|---|---|
14 Days | Control group | 192.48 ± 8.39 | 207.30 ± 13.79 | 192.97 ± 9.36 |
300 mg/kg group | 181.27 ± 7.41 | 191.63 ± 9.46 | 184.44 ± 10.46 | |
600 mg/kg group | 178.50 ± 8.56 * | 187.36 ± 12.34 * | 189.46 ± 6.35 | |
900 mg/kg group | 175.76 ± 7.44 * | 181.57 ± 9.75 ** | 175.28 ± 8.72 * | |
28 Days | Control group | 197.38 ± 11.73 | 210.22 ± 13.95 | 197.81 ± 8.70 |
300 mg/kg group | 189.57 ± 2.21 * | 192.58 ± 8.20 * | 179.18± 10.47 * | |
600 mg/kg group | 179.43 ± 8.32 ** | 184.32 ± 8.53 ** | 172.11 ± 10.59 ** | |
900 mg/kg group | 180.07 ± 6.65 ** | 173.95 ± 6.45 ** | 164.77 ± 7.68 ** | |
42 Days | Control group | 217.46 ± 4.83 | 208.55 ± 13.49 | 195.62 ± 9.49 |
300 mg/kg group | 206.67 ± 8.83 * | 181.51 ± 6.52 ** | 179.13 ± 5.47 ** | |
600 mg/kg group | 202.10 ± 6.21 ** | 169.98 ± 14.29 ** | 175.82 ± 9.69 ** | |
900 mg/kg group | 198.45 ± 6.41 ** | 175.86 ± 10.98 ** | 170.76 ± 4.30 ** |
3.5. Changes of the GSH Contents
Days | Groups | Duodenum | Jejunum | Ileum |
---|---|---|---|---|
14.Days | Control group | 7.06 ± 0.75 | 5.47 ± 0.47 | 2.66 ± 0.31 |
300 mg/kg group | 6.84 ± 0.56 | 5.07 ± 0.46 | 2.30 ± 0.16 | |
600 mg/kg group | 7.07 ± 0.35 | 4.43 ± 0.28 ** | 2.74 ± 0.55 | |
900 mg/kg group | 6.10 ± 0.49 * | 4.10 ± 0.30 ** | 2.08 ± 0.16 * | |
28 Days | Control group | 7.06 ± 0.75 | 4.57 ± 0.23 | 2.60 ± 0.25 |
300 mg/kg group | 6.24 ± 0.34 * | 3.69 ± 0.38 ** | 1.89 ± 0.46 * | |
600 mg/kg group | 6.06 ± 0.59 ** | 3.55 ± 0.36 ** | 1.95 ± 0.14 ** | |
900 mg/kg group | 5.47 ± 0.20 ** | 2.96 ± 0.17 ** | 1.63± 0.41 ** | |
42 Days | Control group | 6.35 ± 0.37 | 4.57 ± 0.41 | 3.15 ± 0.21 |
300 mg/kg group | 5.48 ± 0.43 ** | 3.58 ± 0.25 ** | 2.58 ± 0.40 * | |
600 mg/kg group | 5.68 ± 0.28 * | 3.25 ± 0.34 ** | 2.38 ± 0.17 ** | |
900 mg/kg group | 4.92±0.32 ** | 3.45±0.41 ** | 1.95 ± 0.40 ** |
3.6. Changes of the MDA Contents
Days | Groups | Duodenum | Jejunum | Ileum |
---|---|---|---|---|
14 Days | Control group | 2.32 ± 0.04 | 2.20 ± 0.09 | 2.67 ± 0.33 |
300 mg/kg group | 2.47 ± 0.09 | 2.37 ± 0.14 | 3.06 ± 0.18 | |
600 mg/kg group | 2.42 ± 0.25 | 2.48 ± 0.30 | 3.04 ± 0.19 | |
900 mg/kg group | 2.61 ± 0.20 * | 2.56 ± 0.20 * | 2.97 ± 0.29 | |
28 Days | Control group | 1.99 ± 0.39 | 2.30 ± 0.15 | 2.07 ± 0.29 |
300 mg/kg group | 2.65 ± 0.22 * | 2.93 ± 0.23 * | 2.66 ± 0.33 * | |
600 mg/kg group | 2.79 ± 0.38 ** | 3.13 ± 0.49 ** | 3.09 ± 0.55 ** | |
900 mg/kg group | 3.03 ± 0.26 ** | 3.56 ± 0.47 ** | 3.30 ± 0.17 ** | |
42 Days | Control group | 2.01 ± 0.48 | 2.66 ± 0.27 | 2.62 ± 0.35 |
300 mg/kg group | 2.79 ± 0.42 * | 3.29 ± 0.30 * | 3.46 ± 0.59 * | |
600 mg/kg group | 3.27 ± 0.39 ** | 3.82 ± 0.48 ** | 3.50 ± 0.22 * | |
900 mg/kg group | 3.41 ± 0.46 ** | 3.65 ± 0.49 ** | 4.12 ± 0.60 ** |
4. Discussion
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Cempel, M.; Nikel, G. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud. 2006, 15, 375–382. [Google Scholar]
- Anke, M.; Grun, M.; Ditrich, G.; Groppel, B.; Hennig, A. Low Nickel Rations for Growth and Reproduction in Pigs. In Trace Element Metabolism in Animals-2; Hoekstra, W.G., Suttle, J.W., Canther, H.E., Mertz, W., Eds.; University Park Press: Baltimore, MD, USA, 1974; pp. 715–718. [Google Scholar]
- Nielsen, F.H.; Myron, D.R.; Givand, S.H.; Zimmerman, T.J.; Ollerich, D.A. Nickel deficiency in rats. J. Nutr. 1975, 105, 1620–1630. [Google Scholar]
- Afridi, H.I.; Kazi, T.G.; Kazi, N.; Sirajuddin; Kandhro, G.A.; Baig, J.A.; Shah, A.Q.; Wadhwa, S.K.; Khan, S.; Kolachi, N.F.; Shah, F.; Jamali, M.K.; Arain, M.B. valuation of status of cadmium, lead, and nickel levels in biological samples of normal and night blindness children of age groups 3–7 and 8–12 years. Biol. Trace Elem. Res. 2011, 142, 350–361. [Google Scholar] [CrossRef]
- Stangl, G.I.; Kirchgessner, M. Nickel deficiency alters liver lipid metabolism in rats. J. Nutr. 1996, 126, 2466–2473. [Google Scholar]
- Nielsen, F.H.; Uthus, E.O.; Poellot, R.A.; Shuler, T.R. Dietary vitamin B12, sulfur amino acids, and oddchain fatty acids affect the responses of rats to nickel deprivation. Biol. Trace Elem. Res. 1993, 37, 1–15. [Google Scholar] [CrossRef]
- Uthus, E.O.; Poellot, R.A. Dietary nickel and folic acid interact to affect folate and methionine metabolism in the rat. Biol. Trace Elem. Res. 1997, 58, 25–33. [Google Scholar] [CrossRef]
- Ray, W.J.; Goodin, D.S.; Ng, L. CobaIt(II) and nickel(II) complexes of phosphoglucomutase. Biochemistry 1972, 11, 2800–2804. [Google Scholar] [CrossRef]
- Jolly, P.W.; Wilke, G. Organonickel Complexes. In the Organic Chemistry of Nickel; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Dixon, N.E.; Gazzola, C.; Blakely, R.L.; Zerner, B. Metal ions in enzymes using ammonia or amides. Science 1976, 191, 1144–1150. [Google Scholar]
- Fishbein, W.N.; Smith, M.J.; Nagarajano, K.; Scurzi, W. Federation Proceedings; University of California Press: Berkeley, CA, USA.
- Polacco, J.C. Nitrogen metabolism in soybean tissue culture II. Urea utilization and urease synthesis require Ni2+. Am. Soc. Plant Biol. 1997, 59, 827–830. [Google Scholar]
- Diekert, G.; Thauer, R.K. The effect of nickel on carbon monoxide dehydrogenase formation in Clostridium thermoaceticum and Clostridiurnformicoaceticum. FEMS Microbiol. Lett. 1980, 7, 187–189. [Google Scholar] [CrossRef]
- Diekert, G.; Weber, B.; Thauer, R.K. Nickel dependence of factor F430 content in Methanobacterium thermoautotrophicum. Arch. Microbiol. 1980, 127, 273–277. [Google Scholar] [CrossRef]
- Drake, H.L.; Hu, S.I.; Wood, H.G. Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum. J. Biol. Chem. 1980, 255, 7174–7180. [Google Scholar]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Chromium, Nickel and Welding; WHO International Agency for Research on Cancer: Lyon, France, 1990. [Google Scholar]
- Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, its adverse health effects & oxidative stress. Indian J. Med. Res. 2008, 128, 412–425. [Google Scholar]
- Nielsen, F.H.; Myron, D.R.; Givand, S.H.; Ollerich, D.A. Nickel deficiency and nickel-rhodium interaction in chicks. J. Nutr. 1975, 105, 1607–1619. [Google Scholar]
- Deitch, E.A. The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch. Surg. 1990, 125, 403–413. [Google Scholar] [CrossRef]
- Halliwell, B.; Zhao, K.; Whiteman, M. The gastrointestinal tract: A major site of antioxidant action. Free Radic. Res. 2000, 33, 819–830. [Google Scholar] [CrossRef]
- Gutteridge, J.M. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 1995, 41, 1819–1828. [Google Scholar]
- Das, K.K.; Buchner, V. Effect of nickel exposure on peripheral tissues: Role of oxidative stress in toxicity and possible protection by ascorbic acid. Rev. Environ. Health 2007, 22, 133–149. [Google Scholar]
- Misra, M.; Rodriguez, R.E.; Kasprzak, K.S. Nickel induced lipid peroxidation in the rat: Correlation with nickel effect on antioxidant defense systems. Toxicology 1990, 64, 1–17. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Poultry; National Academy Press: Washington, DC, USA, 1994.
- Shirkey, R.J.; Chakraborty, J.; Bridges, J.W. An improved method for preparing rat small intestine microsomal fractions for studying drug metabolism. Anal. Biochem. 1979, 93, 73–81. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Kawanishi, S.; Inoue, S.; Yamamoto, K. Active oxygen species in DNA damage induced by carcinogenic metal compounds. Environ. Health Perspect. 1994, 102, 17–20. [Google Scholar]
- Novelli, E.L.; Rodrigues, N.L.; Ribas, B.O. Superoxide radical and toxicity of environmental nickel exposure. Hum. Exp. Toxicol. 1995, 14, 248–251. [Google Scholar] [CrossRef]
- Salnikow, K.; Gao, M.; Voitkun, V.; Huang, X.; Costa, M. Altered oxidative stress responses in nickel-resistant mammalian cells. J. Canc. Res. 1994, 54, 6407–6412. [Google Scholar]
- Coogan, T.P.; Latta, D.M.; Snow, E.T.; Costa, M.; Lawrence, A. Toxicity and carcinogenicity of nickel compounds. Crit. Rev. Toxicol. 1989, 19, 341–384. [Google Scholar]
- Chen, C.Y.; Huang, Y.F.; Lin, Y.H.; Yen, S.F. Nickel-induced oxidative stress and effect of antioxidants in human lymphocytes. Arch. Toxicol. 2003, 77, 123–130. [Google Scholar]
- Chen, C.Y.; Huang, Y.F.; Huang, W.R.; Huang, Y.T. Nickel induces oxidative stress and genotoxicity in human lymphocytes. Toxicol. Appl. Pharmacol. 2003, 189, 153–159. [Google Scholar] [CrossRef]
- Sunderman, F.W., Jr.; Marzouk, A.; Hopfer, S.M.; Zaharia, O.; Reid, M.C. Increased lipid peroxidation in tissues of nickel chloride treated rats. Ann. Clin. Lab. Sci. 1985, 15, 229–236. [Google Scholar]
- Wu, B.Y.; Cui, H.M.; Peng, X.; Fang, J.; Zuo, Z.C.; Deng, J.L.; Huang, J.Y. Investigation of the serum oxidative stress in broilers fed on diets supplemented with nickel chloride. Health 2013, 5, 454–459. [Google Scholar] [CrossRef]
- Ercal, N.; Gurer-Orhan, H.; Aykin-Burns, N. Toxic metals and oxidative stress part I: Mechanisms involved in metal induced oxidative damage. Curr. Top. Med. Chem. 2001, 1, 529–539. [Google Scholar] [CrossRef]
- Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007, 35, 1147–1150. [Google Scholar]
- Adedara, I.A.; Owumi, S.E.; Uwaifo, A.O.; Farombi, E.O. Aflatoxin B1 and ethanol co-exposure induces hepatic oxidative damage in mice. Toxicol. Ind. Health 2010, 26, 717–724. [Google Scholar] [CrossRef]
- Ferreccio, C.; Gonzalez, P.C.; Milosavjlevic, S.V.; Marshall, G.G.; Maria, S.A. Lung cancer and arsenic exposure in drinking water: A case control study in northern Chile. Cad. Saude. Publica. 1998, 14, 193–198. [Google Scholar] [CrossRef]
- Naziroglu, M. Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem. Res. 2009, 34, 2181–2191. [Google Scholar] [CrossRef]
- Naziroglu, M. Molecular role of catalase on oxidative stress-induced Ca2+ signaling and TRP cation channel activation in nervous system. J. Recept. Signal. Transduct. Res. 2012, 32, 134–141. [Google Scholar] [CrossRef]
- Gagliano, N.; Dalle, I.D.; Torri, C.; Miglioric, M.; Grizzid, F.; Milzanib, A.; Filippic, C.; Annonie, G.; Colombof, P.; Costaa, F.; et al. Early cytotoxic effects of Ochratoxin A in rat liver: A morphological, biochemical and molecular study. Toxicology 2006, 225, 214–224. [Google Scholar] [CrossRef]
- Aw, T.Y. Intestinal glutathione: Determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility. Toxicol. Appl. Pharmacol. 2005, 204, 320–328. [Google Scholar] [CrossRef]
- Sunderman, F.W., Jr.; Dingle, B.; Hopfer, S.M.; Swift, T. Acute nickel toxicity in electroplating workers who accidentally ingested a solution of nickel sulphate and nickel chloride. Amer. J. Ind. Med. 1988, 14, 257–266. [Google Scholar] [CrossRef]
- Janero, D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biol. Med. 1990, 9, 515–540. [Google Scholar] [CrossRef]
- Chen, J.J.; Yu, B.P. Alteration in mitochondrial membrane fluidity by lipid peroxidation products. Free Radical Biol. Med. 1994, 17, 411–418. [Google Scholar] [CrossRef]
- Marnett, L.J. Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res. 1999, 424, 83–95. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wu, B.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Deng, J.; Huang, J. Dietary Nickel Chloride Induces Oxidative Intestinal Damage in Broilers. Int. J. Environ. Res. Public Health 2013, 10, 2109-2119. https://doi.org/10.3390/ijerph10062109
Wu B, Cui H, Peng X, Fang J, Zuo Z, Deng J, Huang J. Dietary Nickel Chloride Induces Oxidative Intestinal Damage in Broilers. International Journal of Environmental Research and Public Health. 2013; 10(6):2109-2119. https://doi.org/10.3390/ijerph10062109
Chicago/Turabian StyleWu, Bangyuan, Hengmin Cui, Xi Peng, Jing Fang, Zhicai Zuo, Junliang Deng, and Jianying Huang. 2013. "Dietary Nickel Chloride Induces Oxidative Intestinal Damage in Broilers" International Journal of Environmental Research and Public Health 10, no. 6: 2109-2119. https://doi.org/10.3390/ijerph10062109
APA StyleWu, B., Cui, H., Peng, X., Fang, J., Zuo, Z., Deng, J., & Huang, J. (2013). Dietary Nickel Chloride Induces Oxidative Intestinal Damage in Broilers. International Journal of Environmental Research and Public Health, 10(6), 2109-2119. https://doi.org/10.3390/ijerph10062109