Next Article in Journal
A COTS-Based Portable System to Conduct Accurate Substance Concentration Measurements
Previous Article in Journal
An IoT-Based Gamified Approach for Reducing Occupants’ Energy Wastage in Public Buildings
Previous Article in Special Issue
A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies
Article Menu

Export Article

Open AccessArticle
Sensors 2018, 18(2), 538; doi:10.3390/s18020538

A Railway Track Geometry Measuring Trolley System Based on Aided INS

1
GNSS Research Center, Wuhan University, No. 129 Luoyu Road, Wuhan 430079, China
2
Collaborative Innovation Center of Geospatial Technology, Wuhan University, No. 129 Luoyu Road, Wuhan 430079, China
3
Wuhan Municipal Construction Group Co., Ltd., Wuhan 430023, China
4
Shenzhen Datie Detecting and Surveying Inc., Shenzhen 518109, China
*
Author to whom correspondence should be addressed.
Received: 8 January 2018 / Revised: 6 February 2018 / Accepted: 7 February 2018 / Published: 10 February 2018
(This article belongs to the Special Issue Sensors for Deformation Monitoring of Large Civil Infrastructures)

Abstract

Accurate measurement of the railway track geometry is a task of fundamental importance to ensure the track quality in both the construction phase and the regular maintenance stage. Conventional track geometry measuring trolleys (TGMTs) in combination with classical geodetic surveying apparatus such as total stations alone cannot meet the requirements of measurement accuracy and surveying efficiency at the same time. Accurate and fast track geometry surveying applications call for an innovative surveying method that can measure all or most of the track geometric parameters in short time without interrupting the railway traffic. We provide a novel solution to this problem by integrating an inertial navigation system (INS) with a geodetic surveying apparatus, and design a modular TGMT system based on aided INS, which can be configured according to different surveying tasks including precise adjustment of slab track, providing tamping measurements, measuring track deformation and irregularities, and determination of the track axis. TGMT based on aided INS can operate in mobile surveying mode to significantly improve the surveying efficiency. Key points in the design of the TGMT’s architecture and the data processing concept and workflow are introduced in details, which should benefit subsequent research and provide a reference for the implementation of this kind of TGMT. The surveying performance of proposed TGMT with different configurations is assessed in the track geometry surveying experiments and actual projects. View Full-Text
Keywords: railway; track geometry surveying; aided INS; track trolley; inertial surveying; mobile surveying railway; track geometry surveying; aided INS; track trolley; inertial surveying; mobile surveying
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Chen, Q.; Niu, X.; Zuo, L.; Zhang, T.; Xiao, F.; Liu, Y.; Liu, J. A Railway Track Geometry Measuring Trolley System Based on Aided INS. Sensors 2018, 18, 538.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top