Molecules 2007, 12(3), 654-672; doi:10.3390/12030654

Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature

1 St. Petersburg State University, Research Institute of Chemistry, Universitetsky pr., 26, St. Petersburg 198504, Russia 2 Interregional Center “Adaptogen”, Piskarevsky pr., 47/5, St. Petersburg 195067, Russia 3 Russian Scientific Center “Applied Chemistry”, St. Petersburg 197198, Dobrolubov ave., 14, Russia
* Author to whom correspondence should be addressed.
Received: 13 January 2007; in revised form: 22 March 2007 / Accepted: 25 March 2007 / Published: 27 March 2007
(This article belongs to the Special Issue Phenolics and Polyphenolics)
PDF Full-text Download PDF Full-Text [223 KB, uploaded 2 October 2008 11:53 CEST]
Abstract: Oxidation of quercetin by air oxygen takes place in water and aqueous ethanol solutions under mild conditions, namely in moderately-basic media (pH ∼ 8-10) at ambient temperature and in the absence of any radical initiators, without enzymatic catalysis or irradiation of the reaction media by light. The principal reaction products are typical of other oxidative degradation processes of quercetin, namely 3,4-dihydroxy-benzoic (proto-catechuic) and 2,4,6-trihydroxybenzoic (phloroglucinic) acids, as well as the decarboxylation product of the latter – 1,3,5-trihydroxybenzene (phloroglucinol). In accordance with the literature data, this process involves the cleavage of the γ-pyrone fragment (ring C) of the quercetin molecule by oxygen, with primary formation of 4,6-dihydroxy-2-(3,4-dihydroxybenzoyloxy)benzoic acid (depside). However under such mild conditions the accepted mechanism of this reaction (oxidative decarbonylation with formation of carbon monoxide, CO) should be reconsidered as preferably an oxidative decarboxylation with formation of carbon dioxide, CO2. Direct head-space analysis of the gaseous components formed during quercetin oxidation in aqueous solution at ambient temperature indicates that the ratio of carbon dioxide/carbon monoxide in the gas phase after acidification of the reaction media is ca. 96:4 %. Oxidation under these mild conditions is typical for other flavonols having OH groups at C3 (e.g., kaempferol), but it is completely suppressed if this hydroxyl group is substituted by a glycoside fragment (as in rutin), or a methyl substituent. An alternative oxidation mechanism involving the direct cleavage of the C2-C3 bond in the diketo-tautomer of quercetin is proposed.
Keywords: Quercetin; oxidative decarboxylation; air oxygen; mechanism; products; identification

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Zenkevich, I.G.; Eshchenko, A.Y.; Makarova, S.V.; Vitenberg, A.G.; Dobryakov, Y.G.; Utsal, V.A. Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature. Molecules 2007, 12, 654-672.

AMA Style

Zenkevich IG, Eshchenko AY, Makarova SV, Vitenberg AG, Dobryakov YG, Utsal VA. Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature. Molecules. 2007; 12(3):654-672.

Chicago/Turabian Style

Zenkevich, Igor G.; Eshchenko, Anna Y.; Makarova, Svetlana V.; Vitenberg, Alexander G.; Dobryakov, Yuri G.; Utsal, Viktor A. 2007. "Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature." Molecules 12, no. 3: 654-672.

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert