23 pages, 11229 KiB  
Article
Influence of Lanthanum Doping on the Photocatalytic and Antibacterial Capacities of Mg0.33Ni0.33Co0.33Fe2O4 Nanoparticles
by Mariam Rabaa, Malak Mezher, Amani Aridi, Daoud Naoufal, Mahmoud I. Khalil, Ramadan Awad and Waleed Abdeen
Catalysts 2023, 13(4), 693; https://doi.org/10.3390/catal13040693 - 2 Apr 2023
Cited by 9 | Viewed by 2641
Abstract
The increase in environmental pollution, especially water pollution, has intensified the requirement for new strategies for the treatment of water sources. Furthermore, the improved properties of nano-ferrites permit their usage in wastewater treatment. In this regard, novel Mg0.33Ni0.33Co0.33 [...] Read more.
The increase in environmental pollution, especially water pollution, has intensified the requirement for new strategies for the treatment of water sources. Furthermore, the improved properties of nano-ferrites permit their usage in wastewater treatment. In this regard, novel Mg0.33Ni0.33Co0.33LaxFe2−xO4 nanoparticles (NPs), where 0.00≤x≤0.08, were synthesized to test their photocatalytic, antibacterial and antibiofilm activities. The structural and optical properties of the prepared NPs were investigated by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-Vis spectroscopy and photoluminescence (PL) analysis. As La content increases, the bandgap energy increases, whereas the particle size decreases. The photocatalytic activity of the prepared NPs is evaluated by the degradation of methylene blue (MB) dye under sunlight irradiation. Superior activity is exhibited by Mg0.33Ni0.33Co0.33La0.01Fe1.99O4 NPs. The influence of catalyst dosage, pH, temperature and addition of graphene (Gr) on the photodegradation reaction was studied. Increasing the pH and temperature improved the rate of the photodegradation reaction. The antibacterial and antibiofilm activities of the NPs were assessed against Escherichia coli, Leclercia adecarboxylata, Staphylococcus aureus and Enterococcus faecium. Mg0.33Ni0.33Co0.33Fe2O4 NPs inhibited bacterial growth. They had bacteriostatic activity on all isolates, with a greater effect on Gram-positive bacteria. All tested nano-ferrites had significant antibiofilm activities against some biofilms. Full article
Show Figures

Graphical abstract

22 pages, 6490 KiB  
Article
Effects of the Acidic and Textural Properties of Y-Type Zeolites on the Synthesis of Pyridine and 3-Picoline from Acrolein and Ammonia
by Israel Pala-Rosas, José Luis Contreras, José Salmones, Ricardo López-Medina, Deyanira Angeles-Beltrán, Beatriz Zeifert, Juan Navarrete-Bolaños and Naomi N. González-Hernández
Catalysts 2023, 13(4), 652; https://doi.org/10.3390/catal13040652 - 26 Mar 2023
Cited by 6 | Viewed by 2609
Abstract
A set of Y-type zeolites with Si/Al atomic ratios between 7–45 were studied as catalysts in the aminocyclization reaction between acrolein and ammonia to produce pyridine and 3-picoline. The catalytic activity tests at 360 °C revealed that the acrolein conversion increased in the [...] Read more.
A set of Y-type zeolites with Si/Al atomic ratios between 7–45 were studied as catalysts in the aminocyclization reaction between acrolein and ammonia to produce pyridine and 3-picoline. The catalytic activity tests at 360 °C revealed that the acrolein conversion increased in the order Z45 < ZY34 < ZY7 < ZY17, in agreement with the increase of the total acidity per gram of catalyst. In all cases, pyridine bases and cracking products (acetaldehyde and formaldehyde) were detected in the outflow from the reactor. The total yield of pyridines was inversely proportional to the total acidity for the catalysts, which presented large surface areas and micro- and mesoporosity. The selectivity towards 3-picoline was favored when using catalysts with a Brønsted/Lewis acid sites ratio close to 1. The formation of pyridine occurred more selectively over Lewis acid sites than Brønsted acid sites. The deactivation tests showed that the time on stream of the catalysts depended on the textural properties of zeolites, i.e., large pore volume and large BET area, as evidenced by the deactivation rate constants and the characterization of the spent catalysts. The physicochemical properties of the catalysts were determined by XRD, UV-vis, and Raman spectroscopies, infrared spectroscopy with adsorbed pyridine, N2 physisorption, and SEM-EDXS. After the reaction, the spent catalysts were characterized by XRD, Raman spectroscopy, TGA, and SEM-EDXS, indicating that the uniform deposition of polyaromatic species on the catalyst surface and within the porous system resulted in the loss of activity. Full article
Show Figures

Figure 1

20 pages, 12373 KiB  
Article
Divergent Reactivity of D-A Cyclopropanes under PTC Conditions, Ring-Opening vs. Decyanation Reaction
by Giorgiana Denisa Bisag, Pietro Viola, Luca Bernardi and Mariafrancesca Fochi
Catalysts 2023, 13(4), 760; https://doi.org/10.3390/catal13040760 - 16 Apr 2023
Viewed by 2545
Abstract
The divergent reactivity of D-A cyclopropane, under PTC conditions, is herein reported. Thus, a ring-opening or a decyanation reaction can be achieved by reacting 2-arylcyclopropane-1,1-dicarbonitriles 1 with thioacetic acid in different reaction conditions. The use of solid Cs2CO3 leads unexpectedly [...] Read more.
The divergent reactivity of D-A cyclopropane, under PTC conditions, is herein reported. Thus, a ring-opening or a decyanation reaction can be achieved by reacting 2-arylcyclopropane-1,1-dicarbonitriles 1 with thioacetic acid in different reaction conditions. The use of solid Cs2CO3 leads unexpectedly to the synthesis of new D-A cyclopropane derivatives via a decyanation reaction, followed by diastereoselective acetylation, whereas the use of an aqueous solution of Cs2CO3 results in a typical ring-opening reaction with the formation of S-thiolate products. Therefore, the use of tailored reaction conditions allows one to obtain either cyclic or open-chain products in moderate to good yields. Full article
(This article belongs to the Special Issue Feature Papers in Catalysis in Organic and Polymer Chemistry)
Show Figures

Figure 1

13 pages, 5024 KiB  
Article
Electrocatalytic Hydrogen Evolution Reaction from Acetic Acid over Gold Immobilized Glassy Carbon Surface
by Basmah H. Alshammari, Humayra Begum, Fatma A. Ibrahim, Mohamed S. Hamdy, Tahamida A. Oyshi, Nazia Khatun and Mohammad A. Hasnat
Catalysts 2023, 13(4), 744; https://doi.org/10.3390/catal13040744 - 13 Apr 2023
Cited by 9 | Viewed by 2536
Abstract
A hydrogen fuel cell is a highly promising alternative to fossil fuel sources owing to the emission of harmless byproducts. However, the operation of hydrogen fuel cells requires a constant supply of highly pure hydrogen gas. The scarcity of sustainable methods of producing [...] Read more.
A hydrogen fuel cell is a highly promising alternative to fossil fuel sources owing to the emission of harmless byproducts. However, the operation of hydrogen fuel cells requires a constant supply of highly pure hydrogen gas. The scarcity of sustainable methods of producing such clean hydrogen hinders its global availability. In this work, a noble Au-atom-decorated glassy carbon electrode (Au/GCE) was prepared via a conventional electrodeposition technique and used to investigate the generation of hydrogen from acetic acid (AA) in a neutral electrolyte using 0.1 M KCl as the supporting electrolyte. Electrochemical impedance spectroscopy (EIS), open circuit potential measurement, cyclic voltammetry (CV), and rotating disk electrode voltammetry (RDE) were performed for the characterization and investigation of the catalytic properties. The constructed catalyst was able to produce hydrogen from acetic acid at a potential of approximately −0.2 V vs. RHE, which is much lower than a bare GCE surface. According to estimates, the Tafel slope and exchange current density are 178 mV dec−1 and 7.90×106 A cm−2, respectively. Furthermore, it was revealed that the hydrogen evolution reaction from acetic acid has a turnover frequency (TOF) of approximately 0.11 s−1. Full article
Show Figures

Figure 1

12 pages, 10086 KiB  
Article
Manganese Salan Complexes as Catalysts for Hydrosilylation of Aldehydes and Ketones
by Nora Almutairi, Srikanth Vijjamarri and Guodong Du
Catalysts 2023, 13(4), 665; https://doi.org/10.3390/catal13040665 - 29 Mar 2023
Cited by 2 | Viewed by 2522
Abstract
Manganese has attracted significant recent attention due to its abundance, low toxicity, and versatility in catalysis. In the present study, a series of manganese (III) complexes supported by salan ligands have been synthesized and characterized, and their activity as catalysts in the hydrosilylation [...] Read more.
Manganese has attracted significant recent attention due to its abundance, low toxicity, and versatility in catalysis. In the present study, a series of manganese (III) complexes supported by salan ligands have been synthesized and characterized, and their activity as catalysts in the hydrosilylation of carbonyl compounds was examined. While manganese (III) chloride complexes exhibited minimal catalytic efficacy without activation of silver perchlorate, manganese (III) azide complexes showed good activity in the hydrosilylation of carbonyl compounds. Under optimized reaction conditions, several types of aldehydes and ketones could be reduced with good yields and tolerance to a variety of functional groups. The possible mechanisms of silane activation and hydrosilylation were discussed in light of relevant experimental observations. Full article
(This article belongs to the Special Issue The Role of Catalysts in Functionalization of C-H and C-C Bonds II)
Show Figures

Figure 1

14 pages, 5092 KiB  
Article
Straightforward and Efficient Deuteration of Terminal Alkynes with Copper Catalysis
by Xènia Tarrach, Jingzhou Yang, Mohammad Soleiman-Beigi and Silvia Díez-González
Catalysts 2023, 13(4), 648; https://doi.org/10.3390/catal13040648 - 23 Mar 2023
Cited by 2 | Viewed by 2521
Abstract
The mild and effective preparation of deuterated organic molecules is an active area of research due to their important applications. Herein, we report an air-stable and easy to access copper(I) complex as catalyst for the deuteration of mono-substituted alkynes. Reactions were carried out [...] Read more.
The mild and effective preparation of deuterated organic molecules is an active area of research due to their important applications. Herein, we report an air-stable and easy to access copper(I) complex as catalyst for the deuteration of mono-substituted alkynes. Reactions were carried out in technical solvents and in the presence of air, to obtain excellent deuterium incorporation in a range of functionalised alkynes. Full article
(This article belongs to the Special Issue Feature Papers in Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

13 pages, 7021 KiB  
Article
Atomically Dispersed Pd Sites on ZrO2 Hybridized N-Doped Carbon for Efficient Suzuki–Miyaura Reaction
by Jiaqi Du, Yidan Peng, Xu Guo, Guoliang Zhang, Fengbao Zhang, Xiaobin Fan, Wenchao Peng and Yang Li
Catalysts 2023, 13(4), 651; https://doi.org/10.3390/catal13040651 - 25 Mar 2023
Cited by 4 | Viewed by 2493
Abstract
Researchers studying heterogeneous catalysis are intrigued by single-atom catalysts (SACs) due to their ultrahigh atomic utilization. However, only a few reports on SAC-catalyzed classical organic transformations are available. In this work, atomically dispersed Pd sites are confined to a ZrO2 hybridized N-doped [...] Read more.
Researchers studying heterogeneous catalysis are intrigued by single-atom catalysts (SACs) due to their ultrahigh atomic utilization. However, only a few reports on SAC-catalyzed classical organic transformations are available. In this work, atomically dispersed Pd sites are confined to a ZrO2 hybridized N-doped carbon skeleton with a smart design. UiO-66-NH2 is used to anchor Pd atoms by the coordination of the donor atoms including lone pairs of electrons and metal atoms. Subsequently, the in situ introduction of ZrO2 doping is achieved using pyrolysis, which helps improve the catalytic performance by modulating the electronic state. The Pd@ZrO2/N–C catalyst obtained from the unique design exhibits a high yield (99%) in eco-friendly media with an extremely low noble metal dosage (0.03 mol% Pd) for the Suzuki reaction. Moreover, Pd@ZrO2/N–C remains highly active after being reused several times and possesses versatility in a variety of substrates. This strategy offers a feasible alternative to designing SACs with atomically dispersed noble metals for heterogeneous reactions. Full article
(This article belongs to the Topic Catalysis: Homogeneous and Heterogeneous)
Show Figures

Figure 1

16 pages, 3233 KiB  
Article
Effect of MnO2 Crystal Type on the Oxidation of Furfural to Furoic Acid
by Xu Wu, Heqin Guo, Litao Jia, Yong Xiao, Bo Hou and Debao Li
Catalysts 2023, 13(4), 663; https://doi.org/10.3390/catal13040663 - 28 Mar 2023
Cited by 7 | Viewed by 2486
Abstract
The base-free oxidation of furfural by non-noble metal systems has been challenging. Although MnO2 emerges as a potential catalyst application in base-free conditions, its catalytic efficiency still needs to be improved. The crystalline form of MnO2 is an important factor affecting [...] Read more.
The base-free oxidation of furfural by non-noble metal systems has been challenging. Although MnO2 emerges as a potential catalyst application in base-free conditions, its catalytic efficiency still needs to be improved. The crystalline form of MnO2 is an important factor affecting the oxidation ability of furfural. For this reason, four crystalline forms of MnO2 (α, β, γ, and δ-MnO2) were selected. Their oxidation performance and surface functional groups were analyzed and compared in detail. Only δ-MnO2 exhibited excellent activity, achieving 99.04% furfural conversion and 100% Propo.FA (Only furoic acid was detected by HPLC in the product) under base-free conditions, while the furfural conversion of α, β, and γ-MnO2 was below 10%. Characterization by XPS, IR, O2-TPD and other means revealed that δ-MnO2 has the most abundant active oxygen species and surface hydroxyl groups, which are responsible for the best performance of δ-MnO2. This work achieves the green and efficient oxidation of furfural to furoic acid over non-noble metal catalysts. Full article
(This article belongs to the Special Issue Recent Trends in Catalysis for Syngas Production and Conversion)
Show Figures

Graphical abstract

17 pages, 6325 KiB  
Article
Effects of Synthesis Variables on SAPO-34 Crystallization Templated Using Pyridinium Supramolecule and Its Catalytic Activity in Microwave Esterification Synthesis of Propyl Levulinate
by Yik-Ken Ma, Taghrid S. Alomar, Najla AlMasoud, Zeinhom M. El-Bahy, Stephen Chia, T. Jean Daou, Fitri Khoerunnisa, Tau Chuan Ling and Eng-Poh Ng
Catalysts 2023, 13(4), 680; https://doi.org/10.3390/catal13040680 - 30 Mar 2023
Cited by 6 | Viewed by 2463
Abstract
A detailed investigation of the hydrothermal crystallization of SAPO-34 in the presence of the novel 1-propylpyridinium hydroxide ([PrPy]OH) organic structural directing agent is presented. The synthesis conditions are systematically tuned to investigate the effects of various parameters (viz. concentrations of each reactant, crystallization [...] Read more.
A detailed investigation of the hydrothermal crystallization of SAPO-34 in the presence of the novel 1-propylpyridinium hydroxide ([PrPy]OH) organic structural directing agent is presented. The synthesis conditions are systematically tuned to investigate the effects of various parameters (viz. concentrations of each reactant, crystallization time, and temperature) on the nucleation and crystallization of SAPO-34. The results show that a careful variation in each of the synthesis parameters results in the formation of competing phases such as SAPO-5, SAPO-35, and SAPO-36. Pure and fully crystalline SAPO-34 can be crystallized using a precursor hydrogel of a molar ratio of 2.0 Al: 4.7 P: 0.9 Si: 6.7 [PrPy]OH: 148 H2O at 200 °C for only 19 h, which is a shorter time than that found in previous studies. The prepared SAPO-34 is also very active in the esterification of levulinic acid and 1-propanol. By using microwave heating, 91.5% conversion with 100% selectivity toward propyl levulinate is achieved within 20 min at 190 °C. Hence, the present study may open a new insight into the optimum synthesis study of other zeolites using novel pyridinium organic moieties and the opportunity of replacing conventional harmful and non-recyclable homogeneous catalysts in levulinate biofuel synthesis. Full article
Show Figures

Graphical abstract

15 pages, 6548 KiB  
Article
Band Gap Engineering in Quadruple-Layered Sillén–Aurivillius Perovskite Oxychlorides Bi7Fe2Ti2O17X (X = Cl, Br, I) for Enhanced Photocatalytic Performance
by Jikun Chen, Yan Gu, Shishi Xu, Yunxiang Zhang, Zhe Zhang, Lin Shi, Zhichao Mu, Chenliang Zhou, Jiali Zhang and Qinfang Zhang
Catalysts 2023, 13(4), 751; https://doi.org/10.3390/catal13040751 - 14 Apr 2023
Cited by 11 | Viewed by 2462
Abstract
Developing efficient photocatalyst for the photoreduction of CO2 and degradation of organic pollutants is an effective alternative to address increasingly serious energy problems and environmental pollution. Herein, the isostructural Sillén–Aurivillius oxyhalides, Bi7Fe2Ti2O17X (X = [...] Read more.
Developing efficient photocatalyst for the photoreduction of CO2 and degradation of organic pollutants is an effective alternative to address increasingly serious energy problems and environmental pollution. Herein, the isostructural Sillén–Aurivillius oxyhalides, Bi7Fe2Ti2O17X (X = Cl, Br, and I; BFTOX), are fabricated for CO2 reduction and degradation of organic pollutants for the first time. Density functional theory (DFT) calculations show that the valence band maximum (VBM) of BFTOC and BFTOB is contributed by the dispersive 2p orbitals of O-atoms, providing the narrow band gap (Eg) and possibly the stability against self-decomposition deactivation. The photocatalytic activities of BFTOX are strongly affected by the halogens (Cl, Br, and I), namely, the BFTOCl sample displays outstanding activity improvement (3.74 μmol·g−1·h−1) for photocatalytic performance. This is mainly attributed to the high separation of charge carriers, small optical band gap, and extended optical absorption. This work focuses on affording a reference to develop efficient and stable photocatalysts from Sillén-Aurivillius layered oxyhalide materials. Full article
(This article belongs to the Special Issue Photocatalytic Nanomaterials for Environmental Purification)
Show Figures

Figure 1

16 pages, 5432 KiB  
Article
Simultaneous Photocatalytic Sugar Conversion and Hydrogen Production Using Pd Nanoparticles Decorated on Iron-Doped Hydroxyapatite
by Chitiphon Chuaicham, Yuto Noguchi, Sulakshana Shenoy, Kaiqian Shu, Jirawat Trakulmututa, Assadawoot Srikhaow, Karthikeyan Sekar and Keiko Sasaki
Catalysts 2023, 13(4), 675; https://doi.org/10.3390/catal13040675 - 30 Mar 2023
Cited by 5 | Viewed by 2453
Abstract
Pd nanoparticles (PdNPs) were successfully deposited on the surface of Fe(III)-modified hydroxyapatite (HAp), which was subsequently used as a photocatalyst for simultaneous photocatalytic H2 evolution and xylose conversion. The structural phase and morphology of the pristine HAp, FeHAp, and Pd@FeHAp were examined [...] Read more.
Pd nanoparticles (PdNPs) were successfully deposited on the surface of Fe(III)-modified hydroxyapatite (HAp), which was subsequently used as a photocatalyst for simultaneous photocatalytic H2 evolution and xylose conversion. The structural phase and morphology of the pristine HAp, FeHAp, and Pd@FeHAp were examined using XRD, SEM, and TEM instruments. At 20 °C, Pd@FeHAp provided a greater xylose conversion than pristine HAp and FeHAp, about 2.15 times and 1.41 times, respectively. In addition, lactic acid and formic acid production was increased by using Pd@FeHAp. The optimal condition was further investigated using Pd@FeHAp, which demonstrated around 70% xylose conversion within 60 min at 30 °C. Moreover, only Pd@FeHAp produced H2 under light irradiation. To clarify the impact of Fe(III) doping in FeHAp and heterojunction between PdNPs and FeHAp in the composite relative to pure Hap, the optical and physicochemical properties of Pd@FeHAp samples were analyzed, which revealed the extraordinary ability of the material to separate and transport photogenerated electron-hole pairs, as demonstrated by a substantial reduction in photoluminescence intensity when compared to Hp and FeHAp. In addition, a decrease in electron trap density in the Pd@FeHAp composite using reversed double-beam photoacoustic spectroscopy was attributed to the higher photocatalytic activity rate. Furthermore, the development of new electronic levels by the addition of Fe(III) to the structure of HAp in FeHAp may improve the ability to absorb light by lessening the energy band gap. The photocatalytic performance of the Pd@FeHAp composite was improved by lowering charge recombination and narrowing the energy band gap. As a result, a newly developed Pd@FeHAp composite might be employed as a photocatalyst to generate both alternative H2 energy and high-value chemicals. Full article
Show Figures

Graphical abstract

16 pages, 3236 KiB  
Article
Effect of Decoration of C@TiO2 Core-Shell Composites with Nano-Ag Particles on Photocatalytic Activity in 4-Nitrophenol Degradation
by Karol Sidor, Róża Lehmann, Anna Rokicińska, Tomasz Berniak, Marek Dębosz and Piotr Kuśtrowski
Catalysts 2023, 13(4), 764; https://doi.org/10.3390/catal13040764 - 17 Apr 2023
Viewed by 2450
Abstract
Photoactive TiO2 materials based on a C@TiO2 core-shell structure synthesized according to the bottom-up strategy using a spherical resin core were presented in relation to commercial TiO2 (P25) used as a reference material. The studied TiO2 materials were modified [...] Read more.
Photoactive TiO2 materials based on a C@TiO2 core-shell structure synthesized according to the bottom-up strategy using a spherical resin core were presented in relation to commercial TiO2 (P25) used as a reference material. The studied TiO2 materials were modified with Ag nanoparticles using two alternative methods: impregnation and precipitation. Depending on the deposition technique used, different distributions of the Ag modifier were achieved within the TiO2 structure. As confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements, the precipitation technique resulted in the formation of almost twice smaller, highly dispersed Ag nanoparticles compared to impregnation. Furthermore, the effect of the performed modification on the textural properties (low-temperature N2 adsorption) and surface composition (X-ray photoelectron spectroscopy) was determined. The phase composition of the TiO2 support as well as the dispersion of the Ag modifier significantly affected the energy gap determined from UV–Vis spectra and, consequently, their performance in the process photodegradation of 4-nitrophenol tested as a model molecule. In the case of the @TiO2 material modified with highly dispersed Ag, significantly higher photoactivity in the visible light range was observed than in the presence of analogous P25-based materials. Full article
(This article belongs to the Special Issue Photocatalysts for Treatment of Pollutants in Wastewater)
Show Figures

Figure 1

17 pages, 3744 KiB  
Article
Selective Hydrogenation of Acetylene over Pd-Co/C Catalysts: The Modifying Effect of Cobalt
by Daria V. Yurpalova, Tatyana N. Afonasenko, Igor P. Prosvirin, Andrey V. Bukhtiyarov, Maxim A. Panafidin, Zakhar S. Vinokurov, Mikhail V. Trenikhin, Evgeny Yu. Gerasimov, Tatyana I. Gulyaeva, Larisa M. Kovtunova and Dmitry A. Shlyapin
Catalysts 2023, 13(4), 739; https://doi.org/10.3390/catal13040739 - 13 Apr 2023
Cited by 8 | Viewed by 2445
Abstract
Novel bimetallic Pd-Co catalysts supported on the carbon material Sibunit were synthesized by an incipient wetness impregnation method and used for ethylene production by selective acetylene hydrogenation. It has been established that an increase in the Pd:Co molar ratio from 1:0 to 1:2 [...] Read more.
Novel bimetallic Pd-Co catalysts supported on the carbon material Sibunit were synthesized by an incipient wetness impregnation method and used for ethylene production by selective acetylene hydrogenation. It has been established that an increase in the Pd:Co molar ratio from 1:0 to 1:2 in 0.5%Pd-Co/C catalysts, treated in hydrogen at 500 °C, leads to an increase in the ethylene selectivity from 60 to 67% (T = 45 °C). The selectivity does not change with a further increase in the modifier concentration. The catalysts were investigated by TPR-H2, XRD, TEM HR, EDS, and XPS methods. It was shown that palladium and cobalt in the 0.5%Pd-Co/C samples form Pd(1−x)Cox phases of solid solutions with different compositions depending on the Pd:Co ratio. The cobalt concentration in the Pd-Co particles increases with an increase in the Pd:Co ratio up to 1:2 and then remains at a constant level. In addition, monometallic Co particles were present in the samples with the Pd:Co ratio higher then 1:2. The optimal combination of catalytic properties (the ethylene yield is 62–63%) is typical for catalysts with a Pd:Co molar ratio of 1:2–1:4. which is mainly due to the presence of bimetallic particles containing ~41–43% by at. of cobalt. Full article
Show Figures

Figure 1

19 pages, 6544 KiB  
Article
Highly Effectual Photocatalytic Remediation of Tetracycline under the Broad Spectrum of Sunlight by Novel BiVO4/Sb2S3 Nanocomposite
by Shelly Singla, Pooja Devi and Soumen Basu
Catalysts 2023, 13(4), 731; https://doi.org/10.3390/catal13040731 - 12 Apr 2023
Cited by 14 | Viewed by 2444
Abstract
Heterojunction photocatalysts (PC) with controllable compositions and in-built electric fields have attracted extensive research interest for their use in the remediation of environmental pollutants, owing to their supreme photocatalytic activity. Here, a simple hydrothermal route synthesizing different mole ratios of BiVO4/Sb [...] Read more.
Heterojunction photocatalysts (PC) with controllable compositions and in-built electric fields have attracted extensive research interest for their use in the remediation of environmental pollutants, owing to their supreme photocatalytic activity. Here, a simple hydrothermal route synthesizing different mole ratios of BiVO4/Sb2S3 is reported as the PC. The inclusion of Sb2S3 with BiVO4 in the BiVO4/Sb2S3 composite possesses the ability to harvest a wide spectrum of solar light, an increased surface area, and an effective charge separation of the charge carriers. The efficacy of the synthesized catalyst was gauged by the photocatalytic abatement of a recalcitrant pollutant, tetracycline. The highest decomposition efficacy of 88.7% (rate constant 0.01557 min−1) was achieved with 0.3 g/L of 1:3 BiVO4:Sb2S3 photocatalyst for the tetracycline under sunlight illumination for 120 min. The catalyst was found stable for up to five cycles with a significant retention of its efficacy. The post-degradation characterizations revealed that the photocatalyst is stable due to the intactness of its crystalline planes, morphology, and surface area. Further, gas chromatography–mass spectrometry (GC–MS) was performed to study the decomposed products formed by the abatement of tetracycline. Moreover, chemical oxygen demand/ total organic carbon (COD/TOC) removals of 80.9% and 85.4%, respectively, were observed for the tetracycline standards, while for real TC pills, it was found to be 78.3% and 82.1%, respectively. This signifies that the photocatalyst has good surface catalytic properties in comparison to the existing expensive and time-consuming physicochemical approaches used in industry. Full article
Show Figures

Graphical abstract

14 pages, 1202 KiB  
Article
Biochemical and Spectroscopic Characterization of a Recombinant Laccase from Thermoalkaliphilic Bacillus sp. FNT with Potential for Degradation of Polycyclic Aromatic Hydrocarbons (PAHs)
by Constanza Bueno-Nieto, Rodrigo Cortés-Antiquera, Giannina Espina, Joaquín Atalah, Javiera Villanueva, Carolina Aliaga, Gustavo E. Zuñiga and Jenny M. Blamey
Catalysts 2023, 13(4), 763; https://doi.org/10.3390/catal13040763 - 17 Apr 2023
Cited by 8 | Viewed by 2443
Abstract
Laccases are industrially relevant enzymes that are known for the wide variety of substrates they can use. In recent years, fungal laccases have been progressively replaced by bacterial laccases in applied contexts due to their capacity to work on harsh conditions including high [...] Read more.
Laccases are industrially relevant enzymes that are known for the wide variety of substrates they can use. In recent years, fungal laccases have been progressively replaced by bacterial laccases in applied contexts due to their capacity to work on harsh conditions including high temperatures, pHs, and chloride concentrations. The focus of researchers has turned specifically towards enzymes from extremophilic organisms because of their robustness and stability. The recombinant versions of enzymes from extremophiles have shown to overcome the problems associated with growing their native host organisms under laboratory conditions. In this work, we further characterize a recombinant spore-coat laccase from Bacillus sp. FNT, a thermoalkaliphilic bacterium isolated from a hot spring in a geothermal site. This recombinant laccase was previously shown to be very active and thermostable, working optimally at temperatures around 70–80 °C. Here, we showed that this enzyme is also resistant to common inhibitors, and we tested its ability to oxidize different polycyclic aromatic hydrocarbons, as these persistent organic pollutants accumulate in the environment, severely damaging ecosystems and human health. So far, the enzyme was found to efficiently oxidize anthracene, making it a compelling biotechnological tool for biocatalysis and a potential candidate for bioremediation of aromatic contaminants that are very recalcitrant to degradation. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1