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Abstract: Manganese has attracted significant recent attention due to its abundance, low toxicity,
and versatility in catalysis. In the present study, a series of manganese (III) complexes supported
by salan ligands have been synthesized and characterized, and their activity as catalysts in the
hydrosilylation of carbonyl compounds was examined. While manganese (III) chloride complexes
exhibited minimal catalytic efficacy without activation of silver perchlorate, manganese (III) azide
complexes showed good activity in the hydrosilylation of carbonyl compounds. Under optimized
reaction conditions, several types of aldehydes and ketones could be reduced with good yields
and tolerance to a variety of functional groups. The possible mechanisms of silane activation and
hydrosilylation were discussed in light of relevant experimental observations.
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1. Introduction

There has been an emerging shift towards first-row transition metals in catalysis [1–4].
Conventionally, the precious metal-based catalysts, represented by palladium, have been a
dominating force, particularly in the pharmaceutical industry. However, the toxicity and
the increasing scarcity of these elements have raised health and sustainability concerns and
stimulated the search for alternative catalytic systems. Consequently, first-row metals such
as Fe [5–8], Cu [9,10], and Zn [11–14] have attracted growing interest in various catalytic
reactions due to their abundance and low toxicity. The distinct reactivity of the first-row
metals may enable new transformations inaccessible with the second- and third-row metals.
As one of the most abundant transition metals, Mn has seen a recent resurgence of research
beyond traditional oxidation/oxygenation catalysis [15,16]. A wide variety of chemical
transformations have been achieved with manganese catalysis, such as hydrogenation
of alkenes [17], CO2, esters, ketones, nitriles [18–24], hydroboration of carbonyls, nitriles
carboxylic acids and CO2 [25–30], electrochemical hydrogen production [31], dehydro-
genative olefination of alkyl-substituted heteroarenes and sulfones with alcohols [32–35],
alkylation of nitriles, esters, and amides [36,37], dehydrogenation of alcohols [38–40] and
its application in the synthesis of pyrroles and imides from amines and diols [41,42], and
dehydrogenative cross-coupling of hydrosilanes and alcohols [43–46].

Among these developments, manganese-catalyzed hydrosilylation occupies a special
place, thanks to the early work by the Cutler group, showing that simple manganese
carbonyl complexes were effective catalysts for the hydrosilylation of various unsaturated
substrates [47–52]. Hydrosilylation of C=O-containing compounds represents a mild and
versatile approach for the reduction of these compounds and various metal and nonmetal-
catalyzed reactions have been reported using commercial hydrosilane reagents [53–56]. Not
surprisingly, recent research in manganese also provides a wide range of catalysts for the
hydrosilylation of aldehydes, ketones, esters, amides, and carboxylic acids [57–70]. Efficient
hydrosilylation of C=C double bonds by manganese catalysts has also been reported [71,72].
A few representative examples of manganese (pre)catalysts for hydrosilylation are shown
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in Scheme 1. Although a direct comparison of the catalytic activity of these catalysts
across different groups is difficult due to the varied reaction conditions and the choice of
substrates, a brief summary of typical carbonyl substrates is compiled in Table S1.
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Metals supported by salen ligands have been widely reported as catalysts in different
transformations. Our previous work has shown a manganese salen complex is highly
efficient in catalyzing the hydrosilylation and hydroboration of carbonyl groups with
high yields and broad tolerance of functional groups [28,68]. Mechanistic investigations
suggest that the availability of two cis-coordination sites at the Mn center is important
for the catalytic activity. Although such a cis-coordination mode has been observed with
salen complexes [73], it is conceivably difficult to achieve without some transformation on
the salen ligand, since such ligands typically need four planar coordination sites on the
metal center. Thus our attention has turned to the reduced salen, or salan ligands (where
H2salan = N,N′-dimethyl-N,N′-bis(o-hydroxybenzyl)-1,2-diaminoethane), which are de-
rived from the hydrogenation of the imine bonds in salen. The replacement of the C=N
double bonds by the C-N single bonds provides a more flexible coordination environment
around the metal center, and this may allow ready access to the cis-coordination mode
and facilitate the catalytic reaction. It has been illustrated that salan ligands are a good
platform that could support various transition metals and provide catalytic reactivity as
well as selectivity [74–76]. Herein we report our studies of manganese salan complexes for
catalytic hydrosilylation of carbonyl compounds.

2. Results and Discussion
2.1. Synthesis and Characterization of (Salan)Mn Complexes

The salan ligands were obtained by following the literature procedures [77]. Briefly,
the reaction of salicyaldehyde derivatives with diamine afforded the parent H2salen ligand,
which was first reduced with excess NaBH4 and subsequently methylated by reductive ami-
nation with NaBH4/CH2O. The metallation was carried out with MnCl2 or Mn(OAc)2/LiCl
to first obtain the chloride compounds. The substitution with NaN3 in the presence of
AgClO4 afforded the azido complex (Scheme 2) [78]. The presence of the azido ligand in
(salan-tBu2)Mn(N3) (5b) was confirmed by the peak at 2050 cm−1 in the FT-IR spectrum
(Figure 1). Similarly, the parent (salan)Mn(N3) (5a) featured an azide-stretching peak at
2037 cm−1. For comparison, the starting NaN3 shows an IR peak at 2104 cm−1. The known
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salen analogue, (salen-tBu2)Mn(N3) (6) [79], was also obtained in a similar procedure, and
the IR peak for the azido ligand as a thin film is observed at 2063 cm−1. The vibrational
mode of a series of (salen)Mn(N3) derivatives appeared in the range of 2046–2048 cm−1

in a solution phase determination, typical for the apical azido group in five-coordinate
square pyramidal Mn(III) complexes. Efforts were made to prepare the nitrido manganese
salan complexes since this would offer a direct comparison with the salen analogue [68].
However, experimental attempts, either by photolysis [80–84] of the azido precursor (salan-
tBu2)Mn(N3) or by bleach oxidation of (salan-tBu2)MnCl in the presence of NH4OH [85],
were not successful. Thus, we focused on the (salan)Mn(N3) complexes which showed
reasonable activity in the hydrosilylation reaction.
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2.2. Catalytic Hydrosilylation

Having a series of manganese (III) complexes in hand, we first examined the efficacy of
complex 5b in the hydrosilylation under a variety of reaction conditions, with benzaldehyde
PhCHO as a model substrate and phenylsilane PhSiH3 as the hydrogen source, and the
results are compiled in Table 1. Screening different solvents in the reaction illustrated that
benzene was an optimal solvent in this system, while the hydrosilylation in other common
solvents such as CD3CN and CDCl3 was slower or with low conversions. The reaction
with benzene as a solvent at elevated temperature exhibited a high conversion of >99 % in
less than 1 h with 0.5 mol % loading of the catalyst (entry 1, Table 1). Reaction in CD3CN
under identical conditions resulted in a 94 % conversion within 6.5 h (entry 2). Unlike C6D6
and CD3CN, CDCl3 as a solvent showed negligible conversion after a long reaction time
(entry 4), though increasing the catalyst loading to 1 mol % at a longer reaction time did
lead to some conversion of PhCHO (entry 5). Reaction in toluene-d8 showed comparable
reactivity, as in benzene, reaching a >99% conversion within 40 min (entry 3). Other reaction
parameters were also explored. The reaction with C6D6 could be carried out at a lower
temperature (80 ◦C or at room temperature), and longer reaction times were needed for
reasonable conversion (entries 6 & 7). For example, the reaction could still reach a 90%
conversion after a few days at 80 ◦C. However, when the reaction was run under air, only
minimal conversion was obtained within 5 h (entry 8), which was less active than the
(salen)MnN system in the presence of air [68]. So the rest of the reactions were carried
out under N2. Among other common hydrosilanes, a tertiary hydrosilane, triethoxysilane,
was also active for the hydrosilylation in CD3CN, and a 54% conversion of PhCHO was
observed after 8 h of reaction (entry 9). At this point, the triethoxysilane was completely
consumed, though the side reaction product was not identified. When the loading of the
triethoxysilane was increased to two equivalents of PhCHO, the complete conversion of
PhCHO could be achieved within 8 h (entry 10). Under the same conditions, a reaction
with a ketone, acetophenone, was slower but reached a 99% conversion within 25 h (entry
11). Secondary silanes, such as Ph2SiH2, showed lower activity than PhSiH3 and tertiary
silanes such as Et3SiH showed no activity.

Table 1. Hydrosilylation of PhCHO under different conditions a.
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Entry Cat (Equiv.) Silane (Equiv.) Solvent Temp (◦C) Time Convn (%)

1 5b (0.5%) PhSiH3(1) C6D6 120 40 min >99%
2 5b (0.5%) PhSiH3(1) CD3CN 120 6.5 h 94%
3 5b (0.5%) PhSiH3(1) C7D8 120 40 min >99%
4 5b (0.5%) PhSiH3(1) CDCl3 120 3 d <1%
5 5b (1%) PhSiH3(1) CDCl3 120 4 d 10%
6 5b (1%) PhSiH3(1) C6D6 RT 67 h 20%
7 5b (1%) PhSiH3(1) C6D6 80 13 h 90%

8 b 5b (1%) PhSiH3(1) C6D6 120 3 h 4.8%
9 5b (0.5%) (EtO)3SiH(1) CD3CN 120 8 h 53.6%
10 5b (0.5%) (EtO)3SiH(2) CD3CN 120 8 h >99%

11 c 5b (0.5%) (EtO)3SiH(2) CD3CN 120 25 h >99%
12 d 4b (0.5%) PhSiH3(1) C6D6 120 48 h 9%
13 e 4b (0.5%) PhSiH3(1) C6D6 120 48 h 87%
14 f 5a (0.5%) PhSiH3(1) C6D6 120 2.3 h 99%
15 g 6 (0.5%) PhSiH3(1) C6D6 120 12 h >99%

a Reaction conditions: PhCHO (1 equivalent). The temperature refers to the heating bath temperature. b The
reaction was run under air. c Acetophenone as substrate. d Reaction with complex 4b. e Combination of 4b with
AgClO4 (1:1 ratio). f Reaction with complex 5a. g Reaction using (salen-tBu2)Mn(N3) 6.

After exploration of the reaction conditions, we examined the hydrosilyation of Ph-
CHO with different salan Mn(III) complexes (entries 12–15, Table 1). The parent salen azido
complex 5a was capable of catalyzing the reaction, though with somewhat lower activity
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(entry 14). On the other hand, the chloride complex 4b on its own showed little activity
in the hydrosilylation of PhCHO (entry 12). However, it could be activated by treatment
with an equimolar amount of AgClO4. The hydrosilylation of PhCHO took place after an
induction period and up to 90% conversion was achieved after 48 h (entry 13). Figure 2
depicts the conversion-time profiles of these catalytic systems and it is notable that the
(salan-tBu2)Mn(N3) complex (5b) was the most active among these complexes. For further
comparison, the salen analogue (salen-tBu2)Mn(N3) (6) was also tested under the same
conditions, though it displayed lower activity than 5a and 5b (entry 15).
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Figure 2. The conversion-time profile with different catalysts (0.5 mol%) in the hydrosilylation
of PhCHO.

With the reaction condition established above, we next examined the scope of carbonyl
substrates with 5b. Hydrosilylations of a variety of aldehydes and ketones occurred at
120 ◦C with low loadings of the catalyst 5b (0.5 mol %) in benzene-d6 (as it is cheaper
than toluene-d8) in the presence of PhSiH3 (Table 2). The purified corresponding alcohols
were obtained after an acidic workup of the reaction mixtures. High conversions and
good isolated yields were observed in most cases. The reaction generally proceeded faster
with aldehydes when compared to ketones, as typically observed in the hydrosilylation of
carbonyl compounds [53–56]. In an intermolecular competition reaction between PhCHO
and PhCOMe with PhSiH3 (1:1:1 molar ratio), PhCHO conversion reached 89% within 3 h
while only <5% PhCOMe reacted. Common functional groups, including halides, nitro,
and methoxy, were tolerated under the reaction conditions. The benzaldehyde derivatives
bearing the electron-withdrawing groups Br and NO2 tended to react more rapidly than
those with electron-donating OMe (entries 2–3 vs. 4). The progress of the reaction of
4-methoxyacetophenone (entry 7, Table 2) monitored by 1H NMR spectroscopy was shown
in Figure S5. In addition, the reaction of 4-nitroacetophenone was peculiar under this
condition in that no further conversion was observed at 76% after 72 h (entry 6, Table 2).
The reaction of cinnamaldehyde led to the reduction of the carbonyl group without any
reduction of the C=C double bond, suggesting that the reaction was selective toward
carbonyl groups over alkenes (entry 9). The nearly exclusive 1,2-hydrosilylation of the
α,β-unsaturated carbonyl substrates was different from that of the (salen)MnN-catalyzed
reaction, in which the 1,4-addition product seemed to dominate [68]. Furthermore, aliphatic
carbonyl substrates also underwent hydrosilylation reactions under the same conditions
(entries 10–11), and the conversions were generally high (>95%).
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Table 2. Hydrosilylation of Aldehydes and Ketones Catalyzed by (salan)MnN3
a.

Entry Substrate Time (h) %Conv (Yield) Product
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a Reaction conditions: the reactions were performed with ~1 mmol of the substrates, 1.0 equivalent 

of PhSiH3 0.5 mol% of catalyst 5b in benzene heated at ~120 °C. The conversions were estimated 

from the 1H NMR spectroscopy, and the yields in parentheses were isolated yields of alcohols after 

acidic workup. 

In a reusability test of catalyst 5b, we carried out the hydrosilylation of PhCHO with 

PhSiH3 under standard conditions. After the complete consumption of PhCHO, a second 

batch of PhCHO and PhSiH3 (1:1 molar ratio) was added and the complete reaction of 

PhCHO was observed within 2 h. A third and a fourth batch were added in the subsequent 

runs and gave comparable results. These observations indicated that the catalyst could be 

reused without much loss of reactivity. At a practical level, a gram-scale reaction with 

PhCHO was carried out with 0.5 mol% of 5b under solvent-free conditions, and >97% 

conversion of PhCHO was observed in 4 h. After hydrolysis and purification, a benzyl 

alcohol product was obtained in good yield. 

2.3. Mechanistic Consideration 

In our previous study with a (salen)MnVN catalyst, [68] it was observed that the re-

duction of MnVN by hydrosilanes, as indicated by the color change and the NMR obser-

vations, was the first step of catalysis. Though the exact nature of the reduced Mn species 

was not confirmed, it was thought to be a Mn(II) or Mn(III) species that could interact with 

and activate hydrosilanes for the subsequent reactions. There was also evidence that the 

salen ligand might have undergone some transformation. In the current study, we em-

ployed Mn(III)-salan species as the (pre)catalyst so the reduction of Mn might not be nec-

essary, though the reduction to a Mn(II) species as the active catalyst was possible under 

the current conditions. It has been shown that several manganese(III) catalysts could be 

efficient catalysts in hydrosilylation reactions [61–70]. However, (salan)MnCl 4b showed 

minimum catalytic activity in the hydrosilylation of PhCHO, indicating that Mn(III) alone 

was not a determining factor. Activation of 4b by AgClO4 suggested that it was critical to 

open up the coordination site around the metal center for catalysis. The comparatively 

higher activity of 5b (salan)Mn(N3) vs. 4b (salan)MnCl could be attributed to the weaker 

azido-metal interaction than M-Cl due to the larger size of N3−. In an analogous case, (sa-

lan)Cr(N3) was active in the ring-opening reaction of epoxides, while (salan)CrCl was con-

sidered a precatalyst that required further activation [79]. By the same consideration, the 

reduction of MnVN was supposedly required to open up the coordination site in the 

(salen)MnN catalysis. It should also be pointed out that the metal center in (salen)MnN 

and (salan)MnCl presumably adopts a square pyramidal geometry with an open site trans 

to the nitrido or chloride ligands. This indicated that a second open site, preferably cis to 

the first one, around the metal center, might be needed for hydrosilylation, i.e. to accom-

modate the coordination of both hydrosilane (or a hydride) and the carbonyl substrate. 

The observation that (salan-tBu2)Mn(N3) is more active than (salen-tBu2)Mn(N3) in cataly-

sis (Table 1, entry 1 vs. 13) lends support to this notion since the salan ligands are more 

flexible to accommodate two cis open sites. As to the further activation of the hydrosilanes, 

a radical mechanism seems unlikely, since no ring-opening product was observed with 

cyclopropyl phenyl ketone [86,87]. The reaction progress of the cyclopropyl phenyl ketone 

monitored by the NMR spectroscopy was shown in Figure 3, and the straight conversion 

of the ketone to silyl ethers could be noted with the cyclopropyl ring intact during the 

process. The electronic effect of 4-substituted benzaldehydes indicated that the electron-

withdrawing groups tended to give faster reactions than the electron-donating groups, 

which was comparable to the (salen)MnN-catalyzed hydrosilylation reactions [68], sug-

gesting a similar activation mechanism. Taken together, we speculated a reaction pathway 
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a Reaction conditions: the reactions were performed with ~1 mmol of the substrates, 1.0 equivalent of PhSiH3
0.5 mol% of catalyst 5b in benzene heated at ~120 ◦C. The conversions were estimated from the 1H NMR
spectroscopy, and the yields in parentheses were isolated yields of alcohols after acidic workup.
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In a reusability test of catalyst 5b, we carried out the hydrosilylation of PhCHO with
PhSiH3 under standard conditions. After the complete consumption of PhCHO, a second
batch of PhCHO and PhSiH3 (1:1 molar ratio) was added and the complete reaction of
PhCHO was observed within 2 h. A third and a fourth batch were added in the subsequent
runs and gave comparable results. These observations indicated that the catalyst could
be reused without much loss of reactivity. At a practical level, a gram-scale reaction with
PhCHO was carried out with 0.5 mol% of 5b under solvent-free conditions, and >97%
conversion of PhCHO was observed in 4 h. After hydrolysis and purification, a benzyl
alcohol product was obtained in good yield.

2.3. Mechanistic Consideration

In our previous study with a (salen)MnVN catalyst, [68] it was observed that the
reduction of MnVN by hydrosilanes, as indicated by the color change and the NMR
observations, was the first step of catalysis. Though the exact nature of the reduced Mn
species was not confirmed, it was thought to be a Mn(II) or Mn(III) species that could
interact with and activate hydrosilanes for the subsequent reactions. There was also
evidence that the salen ligand might have undergone some transformation. In the current
study, we employed Mn(III)-salan species as the (pre)catalyst so the reduction of Mn might
not be necessary, though the reduction to a Mn(II) species as the active catalyst was possible
under the current conditions. It has been shown that several manganese(III) catalysts could
be efficient catalysts in hydrosilylation reactions [61–70]. However, (salan)MnCl 4b showed
minimum catalytic activity in the hydrosilylation of PhCHO, indicating that Mn(III) alone
was not a determining factor. Activation of 4b by AgClO4 suggested that it was critical
to open up the coordination site around the metal center for catalysis. The comparatively
higher activity of 5b (salan)Mn(N3) vs. 4b (salan)MnCl could be attributed to the weaker
azido-metal interaction than M-Cl due to the larger size of N3

−. In an analogous case,
(salan)Cr(N3) was active in the ring-opening reaction of epoxides, while (salan)CrCl was
considered a precatalyst that required further activation [79]. By the same consideration,
the reduction of MnVN was supposedly required to open up the coordination site in the
(salen)MnN catalysis. It should also be pointed out that the metal center in (salen)MnN and
(salan)MnCl presumably adopts a square pyramidal geometry with an open site trans to the
nitrido or chloride ligands. This indicated that a second open site, preferably cis to the first
one, around the metal center, might be needed for hydrosilylation, i.e. to accommodate the
coordination of both hydrosilane (or a hydride) and the carbonyl substrate. The observation
that (salan-tBu2)Mn(N3) is more active than (salen-tBu2)Mn(N3) in catalysis (Table 1, entry 1
vs. 13) lends support to this notion since the salan ligands are more flexible to accommodate
two cis open sites. As to the further activation of the hydrosilanes, a radical mechanism
seems unlikely, since no ring-opening product was observed with cyclopropyl phenyl
ketone [86,87]. The reaction progress of the cyclopropyl phenyl ketone monitored by the
NMR spectroscopy was shown in Figure 3, and the straight conversion of the ketone to silyl
ethers could be noted with the cyclopropyl ring intact during the process. The electronic
effect of 4-substituted benzaldehydes indicated that the electron-withdrawing groups
tended to give faster reactions than the electron-donating groups, which was comparable
to the (salen)MnN-catalyzed hydrosilylation reactions [68], suggesting a similar activation
mechanism. Taken together, we speculated a reaction pathway involving the formation of
a hydrosilane-Mn adduct that generated an electrophilic silicon center, the coordination
of a carbonyl substrate cis to the silane, followed by a subsequent nucleophilic attack of
oxygen on the silicon for a silyl ether bond, though further details may vary.
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Figure 3. Hydrosilylation of cyclopropyl phenyl ketone monitored by the NMR spectroscopy.

3. Materials and Methods

All the substrates and reagents were obtained commercially, and the liquid substrates
were degasified and dried over activated molecular sieves (4 Å) prior to the reaction. The
1H and 13C NMR spectra were recorded on a Bruker AVANCE 500 (Billerica, MA, USA) or
AVANCE NEO 400 (Billerica, MA, USA) NMR spectrometer and referenced to the residue
peaks in CDCl3 (7.26), CD3CN (1.94), or C6D6 (7.16).

General procedures for hydrosilylation. To a J Young NMR tube, the catalyst (0.5 mol %),
substrate (one equivalent), C6D6 (0.35 mL), and PhSiH3 (one equivalent) were added in
order under nitrogen in a glovebox. The sealed tube was heated in an oil heating bath
preset at 120 ◦C and the reaction was monitored by the NMR spectroscopy. When the
reaction was completed, the reaction mixture was transferred to a vial with diethyl ether
(2 mL). The mixture was then hydrolyzed using HCl (2 mL, 1 M) and extracted with diethyl
ether. The organic phase was combined and dried over anhydrous Na2SO4. After the
removal of the solvent, the alcohol product was isolated by column chromatography using
silica with hexane-EtOAc as an eluent. The final products were confirmed by 1H NMR and
comparison with the literature’s data.

4. Conclusions

A series of well-defined manganese salan complexes have been synthesized and
shown to exhibit catalytic activity in the hydrosilylation of various aldehydes and ketones.
Decent-to-high yields of the corresponding alcohols were obtained after an acidic workup,
and a variety of functional groups in the carbonyl compounds, such as the methoxy, halides,
and nitro groups, were tolerated. Future efforts will focus on the mechanistic elucidation
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of the silane activation and on additional ligand systems that may improve the catalytic
activity of manganese compounds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13040665/s1, Detailed experimental procedural, and char-
acterization data for catalysts and the hydrosilylation products; Figures S1–S5: 1H NMR spectra
of catalytic hydrosilylation reactions of selected substrates with PhSiH3. Table S1: Comparison of
catalytic activity of selective Mn complexes [76,77,88–92].
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