11 pages, 2993 KiB  
Article
CD93 Signaling via Rho Proteins Drives Cytoskeletal Remodeling in Spreading Endothelial Cells
by Stefano Barbera, Luisa Raucci, Roberta Lugano, Gian Marco Tosi, Anna Dimberg, Annalisa Santucci, Federico Galvagni and Maurizio Orlandini
Int. J. Mol. Sci. 2021, 22(22), 12417; https://doi.org/10.3390/ijms222212417 - 17 Nov 2021
Cited by 18 | Viewed by 3349
Abstract
During angiogenesis, cell adhesion molecules expressed on the endothelial cell surface promote the growth and survival of newly forming vessels. Hence, elucidation of the signaling pathways activated by cell-to-matrix adhesion may assist in the discovery of new targets to be used in antiangiogenic [...] Read more.
During angiogenesis, cell adhesion molecules expressed on the endothelial cell surface promote the growth and survival of newly forming vessels. Hence, elucidation of the signaling pathways activated by cell-to-matrix adhesion may assist in the discovery of new targets to be used in antiangiogenic therapy. In proliferating endothelial cells, the single-pass transmembrane glycoprotein CD93 has recently emerged as an important endothelial cell adhesion molecule regulating vascular maturation. In this study, we unveil a signaling pathway triggered by CD93 that regulates actin cytoskeletal dynamics responsible of endothelial cell adhesion. We show that the Src-dependent phosphorylation of CD93 and the adaptor protein Cbl leads to the recruitment of Crk, which works as a downstream integrator in the CD93-mediated signaling. Moreover, confocal microscopy analysis of FRET-based biosensors shows that CD93 drives the coordinated activation of Rac1 and RhoA at the cell edge of spreading cells, thus promoting the establishment of cell polarity and adhesion required for cell motility. Full article
(This article belongs to the Special Issue Cell and Molecular Interactions in Blood Vessels 2021)
Show Figures

Figure 1

22 pages, 2055 KiB  
Review
MCAM/MUC18/CD146 as a Multifaceted Warning Marker of Melanoma Progression in Liquid Biopsy
by Maria Cristina Rapanotti, Elisa Cugini, Marzia Nuccetelli, Alessandro Terrinoni, Cosimo Di Raimondo, Paolo Lombardo, Gaetana Costanza, Terenzio Cosio, Piero Rossi, Augusto Orlandi, Elena Campione, Sergio Bernardini, Marcel Blot-Chabaud and Luca Bianchi
Int. J. Mol. Sci. 2021, 22(22), 12416; https://doi.org/10.3390/ijms222212416 - 17 Nov 2021
Cited by 19 | Viewed by 4448
Abstract
Human malignant melanoma shows a high rate of mortality after metastasization, and its incidence is continuously rising worldwide. Several studies have suggested that MCAM/MUC18/CD146 plays an important role in the progression of this malignant disease. MCAM/MUC18/CD146 is a typical single-spanning transmembrane glycoprotein, existing [...] Read more.
Human malignant melanoma shows a high rate of mortality after metastasization, and its incidence is continuously rising worldwide. Several studies have suggested that MCAM/MUC18/CD146 plays an important role in the progression of this malignant disease. MCAM/MUC18/CD146 is a typical single-spanning transmembrane glycoprotein, existing as two membrane isoforms, long and short, and an additional soluble form, sCD146. We previously documented that molecular MCAM/MUC18/CD146 expression is strongly associated with disease progression. Recently, we showed that MCAM/MUC18/CD146 and ABCB5 can serve as melanoma-specific-targets in the selection of highly primitive circulating melanoma cells, and constitute putative proteins associated with disease spreading progression. Here, we analyzed CD146 molecular expression at onset or at disease recurrence in an enlarged melanoma case series. For some patients, we also performed the time courses of molecular monitoring. Moreover, we explored the role of soluble CD146 in different cohorts of melanoma patients at onset or disease progression, rather than in clinical remission, undergoing immune therapy or free from any clinical treatment. We showed that MCAM/MUC18/CD146 can be considered as: (1) a membrane antigen suitable for identification and enrichment in melanoma liquid biopsy; (2) a highly effective molecular “warning” marker for minimal residual disease monitoring; and (3) a soluble protein index of inflammation and putative response to therapeutic treatments. Full article
(This article belongs to the Special Issue Cancer Cell Invasion and Metastases 2.0)
Show Figures

Figure 1

18 pages, 11431 KiB  
Article
Enhancement of Bone-Forming Ability on Beta-Tricalcium Phosphate by Modulating Cellular Senescence Mechanisms Using Senolytics
by Xinchen Wang, Yoshitomo Honda, Jianxin Zhao, Hidetoshi Morikuni, Aki Nishiura, Yoshiya Hashimoto and Naoyuki Matsumoto
Int. J. Mol. Sci. 2021, 22(22), 12415; https://doi.org/10.3390/ijms222212415 - 17 Nov 2021
Cited by 14 | Viewed by 3451
Abstract
Various stresses latently induce cellular senescence that occasionally deteriorates the functioning of surrounding tissues. Nevertheless, little is known about the appearance and function of senescent cells, caused by the implantation of beta-tricalcium phosphate (β-TCP)—used widely in dentistry and orthopedics for treating bone diseases. [...] Read more.
Various stresses latently induce cellular senescence that occasionally deteriorates the functioning of surrounding tissues. Nevertheless, little is known about the appearance and function of senescent cells, caused by the implantation of beta-tricalcium phosphate (β-TCP)—used widely in dentistry and orthopedics for treating bone diseases. In this study, two varying sizes of β-TCP granules (<300 μm and 300–500 μm) were implanted, and using histological and immunofluorescent staining, appearances of senescent-like cells in critical-sized bone defects in the calvaria of Sprague Dawley rats were evaluated. Parallelly, bone formation in defects was investigated with or without the oral administration of senolytics (a cocktail of dasatinib and quercetin). A week after the implantation, the number of senescence-associated beta-galactosidase, p21-, p19-, and tartrate-resistant acid phosphatase-positive cells increased and then decreased upon administrating senolytics. This administration of senolytics also attenuated 4-hydroxy-2-nonenal staining, representing reactive oxygen species. Combining senolytic administration with β-TCP implantation significantly enhanced the bone formation in defects as revealed by micro-computed tomography analysis and hematoxylin-eosin staining. This study demonstrates that β-TCP granules latently induce senescent-like cells, and senolytic administration may improve the bone-forming ability of β-TCP by inhibiting senescence-associated mechanisms. Full article
(This article belongs to the Special Issue Periodontal Tissue Regeneration)
Show Figures

Figure 1

18 pages, 14006 KiB  
Article
Genome-Wide Identification of NAC Transcription Factor Family in Juglans mandshurica and Their Expression Analysis during the Fruit Development and Ripening
by Xiang Li, Kewei Cai, Xiaona Pei, Yan Li, Yanbo Hu, Fanjuan Meng, Xingshun Song, Mulualem Tigabu, Changjun Ding and Xiyang Zhao
Int. J. Mol. Sci. 2021, 22(22), 12414; https://doi.org/10.3390/ijms222212414 - 17 Nov 2021
Cited by 26 | Viewed by 3365
Abstract
The NAC (NAM, ATAF and CUC) gene family plays a crucial role in the transcriptional regulation of various biological processes and has been identified and characterized in multiple plant species. However, genome-wide identification of this gene family has not been implemented in Juglans [...] Read more.
The NAC (NAM, ATAF and CUC) gene family plays a crucial role in the transcriptional regulation of various biological processes and has been identified and characterized in multiple plant species. However, genome-wide identification of this gene family has not been implemented in Juglans mandshurica, and specific functions of these genes in the development of fruits remain unknown. In this study, we performed genome-wide identification and functional analysis of the NAC gene family during fruit development and identified a total of 114 JmNAC genes in the J. mandshurica genome. Chromosomal location analysis revealed that JmNAC genes were unevenly distributed in 16 chromosomes; the highest numbers were found in chromosomes 2 and 4. Furthermore, according to the homologues of JmNAC genes in Arabidopsis thaliana, a phylogenetic tree was constructed, and the results demonstrated 114 JmNAC genes, which were divided into eight subgroups. Four JmNAC gene pairs were identified as the result of tandem duplicates. Tissue-specific analysis of JmNAC genes during different developmental stages revealed that 39 and 25 JmNAC genes exhibited upregulation during the mature stage in walnut exocarp and embryos, indicating that they may serve key functions in fruit development. Furthermore, 12 upregulated JmNAC genes were common in fruit ripening stage in walnut exocarp and embryos, which demonstrated that these genes were positively correlated with fruit development in J. mandshurica. This study provides new insights into the regulatory functions of JmNAC genes during fruit development in J. mandshurica, thereby improving the understanding of characteristics and evolution of the JmNAC gene family. Full article
(This article belongs to the Special Issue Metabolic Processes during Seed Germination)
Show Figures

Figure 1

17 pages, 6588 KiB  
Article
MyD88 in Macrophages Enhances Liver Fibrosis by Activation of NLRP3 Inflammasome in HSCs
by Shuang Ge, Wei Yang, Haiqiang Chen, Qi Yuan, Shi Liu, Yongxiang Zhao and Jinhua Zhang
Int. J. Mol. Sci. 2021, 22(22), 12413; https://doi.org/10.3390/ijms222212413 - 17 Nov 2021
Cited by 22 | Viewed by 3932
Abstract
Chronic liver disease mediated by the activation of hepatic stellate cells (HSCs) leads to liver fibrosis. The signal adaptor MyD88 of Toll-like receptor (TLR) signaling is involved during the progression of liver fibrosis. However, the specific role of MyD88 in myeloid cells in [...] Read more.
Chronic liver disease mediated by the activation of hepatic stellate cells (HSCs) leads to liver fibrosis. The signal adaptor MyD88 of Toll-like receptor (TLR) signaling is involved during the progression of liver fibrosis. However, the specific role of MyD88 in myeloid cells in liver fibrosis has not been thoroughly investigated. In this study, we used a carbon tetrachloride (CCl4)-induced mouse fibrosis model in which MyD88 was selectively depleted in myeloid cells. MyD88 deficiency in myeloid cells attenuated liver fibrosis in mice and decreased inflammatory cell infiltration. Furthermore, deficiency of MyD88 in macrophages inhibits the secretion of CXC motif chemokine 2 (CXCL2), which restrains the activation of HSCs characterized by NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation. Moreover, targeting CXCL2 by CXCR2 inhibitors attenuated the activation of HSCs and reduced liver fibrosis. Thus, MyD88 may represent a potential candidate target for the prevention and treatment of liver fibrosis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 27660 KiB  
Article
Monoclonal Antibodies against Nucleocapsid Protein of SARS-CoV-2 Variants for Detection of COVID-19
by Ruei-Min Lu, Shih-Han Ko, Wan-Yu Chen, Yu-Ling Chang, Hsiu-Ting Lin and Han-Chung Wu
Int. J. Mol. Sci. 2021, 22(22), 12412; https://doi.org/10.3390/ijms222212412 - 17 Nov 2021
Cited by 20 | Viewed by 4446
Abstract
Mitigation strategies of the coronavirus disease 2019 (COVID-19) pandemic have been greatly hindered by the continuous emergence of SARS-CoV-2 variants. New sensitive, rapid diagnostic tests for the wide-spectrum detection of viral variants are needed. We generated a panel of 41 monoclonal antibodies against [...] Read more.
Mitigation strategies of the coronavirus disease 2019 (COVID-19) pandemic have been greatly hindered by the continuous emergence of SARS-CoV-2 variants. New sensitive, rapid diagnostic tests for the wide-spectrum detection of viral variants are needed. We generated a panel of 41 monoclonal antibodies against the SARS-CoV-2 nucleocapsid protein (NP) by using mice hybridoma techniques. Of these mAbs, nine exhibited high binding activities and were applied in latex-based lateral flow immunoassays (LFIAs). The LFIAs utilizing NP-mAb-7 and -40 had the best sensitivity and lowest limit of detection: 8 pg for purified NP and 625 TCID50/mL for the authentic virus (hCoV-19/Taiwan/4/2020). The specificity tests showed that the NP-mAb-40/7 LFIA strips did not cross-react with five human coronavirus strains or 20 other common respiratory pathogens. Importantly, we found that 10 NP mutants, including alpha (B.1.1.7), beta (B.1.351), gamma (P.1), and delta (B.1.617.2) variants, could be detected by NP-mAb-40/7 LFIA strips. A clinical study (n = 60) of the NP-mAb-40/7 LFIA strips demonstrated a specificity of 100% and sensitivity of 90% in infected individuals with cycle threshold (Ct) values < 29.5. These anti-NP mAbs have strong potential for use in the clinical detection of SARS-CoV-2 infection, whether the virus is wild-type or a variant of concern. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

15 pages, 2155 KiB  
Article
Reduction of Oxidative Stress in Peripheral Blood Mononuclear Cells Attenuates the Inflammatory Response of Fibroblast-like Synoviocytes in Rheumatoid Arthritis
by Ha-Reum Lee, Su-Jin Yoo, Jinhyun Kim, Chan Keol Park and Seong Wook Kang
Int. J. Mol. Sci. 2021, 22(22), 12411; https://doi.org/10.3390/ijms222212411 - 17 Nov 2021
Cited by 13 | Viewed by 2475
Abstract
The production and oxidation mechanism of reactive oxygen species (ROS) are out of balance in rheumatoid arthritis (RA). However, the correlation between ROS and T cell subsets in RA remains unclear. Peripheral blood mononuclear cells (PBMCs) from patients with RA (n = 40) [...] Read more.
The production and oxidation mechanism of reactive oxygen species (ROS) are out of balance in rheumatoid arthritis (RA). However, the correlation between ROS and T cell subsets in RA remains unclear. Peripheral blood mononuclear cells (PBMCs) from patients with RA (n = 40) and healthy controls (n = 10) were isolated from whole blood samples. Synovial tissues (n = 3) and synovial fluid (n = 10) were obtained from patients with RA. The repartition of T cell subsets and expression of ROS and cytokines were examined according to RA severity. Fibroblast-like synoviocytes (FLSs) from patients with RA were stimulated with PBMCs and the expression of inflammation-related molecules were measured by RT-PCR and cytokine array. Regulatory T cells from patients with moderate (5.1 > DAS28 ≥ 3.2) RA showed the highest expression of mitochondrial ROS among the groups based on disease severity. Although ROS levels steadily increased with RA severity, there was a slight decline in severe RA (DAS28 ≥ 5.1) compared with moderate RA. The expression of inflammatory cytokines in RA FLSs were significantly inhibited when FLSs were co-cultured with PBMCs treated with ROS inhibitor. These findings provide a novel approach to suppress inflammatory response of FLSs through ROS regulation in PBMCs. Full article
Show Figures

Figure 1

45 pages, 6063 KiB  
Review
D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers
by Daniel P. Brink, Celina Borgström, Viktor C. Persson, Karen Ofuji Osiro and Marie F. Gorwa-Grauslund
Int. J. Mol. Sci. 2021, 22(22), 12410; https://doi.org/10.3390/ijms222212410 - 17 Nov 2021
Cited by 22 | Viewed by 5630
Abstract
Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of [...] Read more.
Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker’s yeast Saccharomyces cerevisiae for the utilization of d-xylose, a five-carbon sugar found in high abundance in lignocellulosic biomass and a key substrate to achieve good process economy in chemical production from renewable and non-edible plant feedstocks. Despite many excellent engineering strategies that have allowed recombinant S. cerevisiae to ferment d-xylose to ethanol at high yields, the consumption rate of d-xylose is still significantly lower than that of its preferred sugar d-glucose. In mixed d-glucose/d-xylose cultivations, d-xylose is only utilized after d-glucose depletion, which leads to prolonged process times and added costs. Due to this limitation, the response on d-xylose in the native sugar signaling pathways has emerged as a promising next-level engineering target. Here we review the current status of the knowledge of the response of S. cerevisiae signaling pathways to d-xylose. To do this, we first summarize the response of the native sensing and signaling pathways in S. cerevisiae to d-glucose (the preferred sugar of the yeast). Using the d-glucose case as a point of reference, we then proceed to discuss the known signaling response to d-xylose in S. cerevisiae and current attempts of improving the response by signaling engineering using native targets and synthetic (non-native) regulatory circuits. Full article
(This article belongs to the Special Issue Yeast Cell Signalling Pathways)
Show Figures

Figure 1

21 pages, 2167 KiB  
Review
Diabetes and Colorectal Cancer Risk: A New Look at Molecular Mechanisms and Potential Role of Novel Antidiabetic Agents
by Jelena Vekic, Aleksandra Zeljkovic, Aleksandra Stefanovic, Rosaria Vincenza Giglio, Marcello Ciaccio and Manfredi Rizzo
Int. J. Mol. Sci. 2021, 22(22), 12409; https://doi.org/10.3390/ijms222212409 - 17 Nov 2021
Cited by 26 | Viewed by 4891
Abstract
Epidemiological data have demonstrated a significant association between the presence of type 2 diabetes mellitus (T2DM) and the development of colorectal cancer (CRC). Chronic hyperglycemia, insulin resistance, oxidative stress, and inflammation, the processes inherent to T2DM, also play active roles in the onset [...] Read more.
Epidemiological data have demonstrated a significant association between the presence of type 2 diabetes mellitus (T2DM) and the development of colorectal cancer (CRC). Chronic hyperglycemia, insulin resistance, oxidative stress, and inflammation, the processes inherent to T2DM, also play active roles in the onset and progression of CRC. Recently, small dense low-density lipoprotein (LDL) particles, a typical characteristic of diabetic dyslipidemia, emerged as another possible underlying link between T2DM and CRC. Growing evidence suggests that antidiabetic medications may have beneficial effects in CRC prevention. According to findings from a limited number of preclinical and clinical studies, glucagon-like peptide-1 receptor agonists (GLP-1RAs) could be a promising strategy in reducing the incidence of CRC in patients with diabetes. However, available findings are inconclusive, and further studies are required. In this review, novel evidence on molecular mechanisms linking T2DM with CRC development, progression, and survival will be discussed. In addition, the potential role of GLP-1RAs therapies in CRC prevention will also be evaluated. Full article
(This article belongs to the Special Issue Feature Papers in Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

15 pages, 46634 KiB  
Article
Empagliflozin Ameliorates Free Fatty Acid Induced-Lipotoxicity in Renal Proximal Tubular Cells via the PPARγ/CD36 Pathway in Obese Mice
by Chiang-Chi Huang, Chia-An Chou, Wei-Yu Chen, Jenq-Lin Yang, Wen-Chin Lee, Jin-Bor Chen, Chien-Te Lee and Lung-Chih Li
Int. J. Mol. Sci. 2021, 22(22), 12408; https://doi.org/10.3390/ijms222212408 - 17 Nov 2021
Cited by 37 | Viewed by 5484
Abstract
High serum levels of free fatty acids (FFAs) could contribute to obesity-induced nephropathy. CD36, a class B scavenger receptor, is a major receptor mediating FFA uptake in renal proximal tubular cells. Empagliflozin, a new anti-diabetic agent, is a specific inhibitor of sodium-glucose co-transporter [...] Read more.
High serum levels of free fatty acids (FFAs) could contribute to obesity-induced nephropathy. CD36, a class B scavenger receptor, is a major receptor mediating FFA uptake in renal proximal tubular cells. Empagliflozin, a new anti-diabetic agent, is a specific inhibitor of sodium-glucose co-transporter 2 channels presented on renal proximal tubular cells and inhibits glucose reabsorption. In addition, empagliflozin has shown renoprotective effects. However, the mechanism through which empagliflozin regulates CD36 expression and attenuates FFA-induced lipotoxicity remains unclear. Herein, we aimed to elucidate the crosstalk between empagliflozin and CD36 in FFA-induced renal injury. C57BL/6 mice fed a high-fat diet (HFD) and palmitic acid-treated HK-2 renal tubular cells were used for in vivo and in vitro assessments. Empagliflozin attenuated HFD-induced body weight gain, insulin resistance, and inflammation in mice. In HFD-fed mice, CD36 was upregulated in the tubular area of the kidney, whereas empagliflozin attenuated CD36 expression. Furthermore, empagliflozin downregulated the expression of peroxisome proliferator-activated receptor (PPAR)-γ. Treatment with a PPARγ inhibitor (GW9662) did not further decrease PPARγ expression, whereas a PPARγ antagonist reversed this effect; this suggested that empagliflozin may, at least partly, decrease CD36 by modulating PPARγ. In conclusion, empagliflozin can ameliorate FFA-induced renal tubular injury via the PPARγ/CD36 pathway. Full article
(This article belongs to the Special Issue SGLT2 Inhibitors: Emerging "Magic Bullets" beyond Glycemic Control)
Show Figures

Figure 1

16 pages, 6738 KiB  
Article
Scleroderma-like Impairment in the Network of Telocytes/CD34+ Stromal Cells in the Experimental Mouse Model of Bleomycin-Induced Dermal Fibrosis
by Irene Rosa, Eloisa Romano, Bianca Saveria Fioretto, Daniele Guasti, Lidia Ibba-Manneschi, Marco Matucci-Cerinic and Mirko Manetti
Int. J. Mol. Sci. 2021, 22(22), 12407; https://doi.org/10.3390/ijms222212407 - 17 Nov 2021
Cited by 16 | Viewed by 3342
Abstract
Considerable evidence accumulated over the past decade supports that telocytes (TCs)/CD34+ stromal cells represent an exclusive type of interstitial cells identifiable by transmission electron microscopy (TEM) or immunohistochemistry in various organs of the human body, including the skin. By means of their [...] Read more.
Considerable evidence accumulated over the past decade supports that telocytes (TCs)/CD34+ stromal cells represent an exclusive type of interstitial cells identifiable by transmission electron microscopy (TEM) or immunohistochemistry in various organs of the human body, including the skin. By means of their characteristic cellular extensions (telopodes), dermal TCs are arranged in networks intermingled with a multitude of neighboring cells and, hence, they are thought to contribute to skin homeostasis through both intercellular contacts and releasing extracellular vesicles. In this context, fibrotic skin lesions from patients with systemic sclerosis (SSc, scleroderma) appear to be characterized by a disruption of the dermal network of TCs, which has been ascribed to either cell degenerative processes or possible transformation into profibrotic myofibroblasts. In the present study, we utilized the well-established mouse model of bleomycin-induced scleroderma to gain further insights into the TC alterations found in cutaneous fibrosis. CD34 immunofluorescence revealed a severe impairment in the dermal network of TCs/CD34+ stromal cells in bleomycin-treated mice. CD31/CD34 double immunofluorescence confirmed that CD31/CD34+ TC counts were greatly reduced in the skin of bleomycin-treated mice compared with control mice. Ultrastructural signs of TC injury were detected in the skin of bleomycin-treated mice by TEM. The analyses of skin samples from mice treated with bleomycin for different times by either TEM or double immunostaining and immunoblotting for the CD34/α-SMA antigens collectively suggested that, although a few TCs may transition to α-SMA+ myofibroblasts in the early disease stage, most of these cells rather undergo degeneration, and then are lost. Taken together, our data demonstrate that TC changes in the skin of bleomycin-treated mice mimic very closely those observed in human SSc skin, which makes this experimental model a suitable tool to (i) unravel the pathological mechanisms underlying TC damage and (ii) clarify the possible contribution of the TC loss to the development/progression of dermal fibrosis. In perspective, these findings may have important implications in the field of skin regenerative medicine. Full article
Show Figures

Figure 1

40 pages, 11296 KiB  
Article
A Systematic Approach to the Development of Cilostazol Nanosuspension by Liquid Antisolvent Precipitation (LASP) and Its Combination with Ultrasound
by Emilia Jakubowska, Bartłomiej Milanowski and Janina Lulek
Int. J. Mol. Sci. 2021, 22(22), 12406; https://doi.org/10.3390/ijms222212406 - 17 Nov 2021
Cited by 20 | Viewed by 3955
Abstract
Nanosizing is an approach to improve the dissolution rate of poorly soluble drugs. The first aim of this work was to develop nanosuspension of cilostazol with liquid antisolvent precipitation (LASP) and its combination with ultrasound. Second, to systematically study the effect of bottom-up [...] Read more.
Nanosizing is an approach to improve the dissolution rate of poorly soluble drugs. The first aim of this work was to develop nanosuspension of cilostazol with liquid antisolvent precipitation (LASP) and its combination with ultrasound. Second, to systematically study the effect of bottom-up processing factors on precipitated particles’ size and identify the optimal settings for the best reduction. After solvent and stabilizer screening, in-depth process characterization and optimization was performed using Design of Experiments. The work discusses the influence of critical factors found with statistical analysis: feed concentration, stabilizer amount, stirring speed and ultrasound energy governed by time and amplitude. LASP alone only generated particle size of a few microns, but combination with ultrasound was successful in nanosizing (d10 = 0.06, d50 = 0.33, d90 = 1.45 µm). Micro- and nanosuspension’s stability, particle morphology and solid state were studied. Nanosuspension displayed higher apparent solubility than equilibrium and superior dissolution rate over coarse cilostazol and microsuspension. A bottom-up method of precipitation-sonication was demonstrated to be a successful approach to improve the dissolution characteristics of poorly soluble, BCS class II drug cilostazol by reducing its particle size below micron scale, while retaining nanosuspension stability and unchanged crystalline form. Full article
(This article belongs to the Special Issue Nanotechnology for Drug Delivery)
Show Figures

Figure 1

22 pages, 1212 KiB  
Review
Nanoparticle-Mediated Delivery Systems in Photodynamic Therapy of Colorectal Cancer
by Nokuphila Winifred Nompumelelo Simelane and Heidi Abrahamse
Int. J. Mol. Sci. 2021, 22(22), 12405; https://doi.org/10.3390/ijms222212405 - 17 Nov 2021
Cited by 33 | Viewed by 4200
Abstract
Colorectal cancer (CRC) involving a malignant tumour remains one of the greatest contributing causes of fatal mortality and has become the third globally ranked malignancy in terms of cancer-associated deaths. Conventional CRC treatment approaches such as surgery, radiation, and chemotherapy are the most [...] Read more.
Colorectal cancer (CRC) involving a malignant tumour remains one of the greatest contributing causes of fatal mortality and has become the third globally ranked malignancy in terms of cancer-associated deaths. Conventional CRC treatment approaches such as surgery, radiation, and chemotherapy are the most utilized approaches to treat this disease. However, they are limited by low selectivity and systemic toxicity, so they cannot completely eradicate this disease. Photodynamic therapy (PDT) is an emerging therapeutic modality that exerts selective cytotoxicity to cancerous cells through the activation of photosensitizers (PSs) under light irradiation to produce cytotoxic reactive oxygen species (ROS), which then cause cancer cell death. Cumulative research findings have highlighted the significant role of traditional PDT in CRC treatment; however, the therapeutic efficacy of the classical PDT strategy is restricted due to skin photosensitivity, poor cancerous tissue specificity, and limited penetration of light. The application of nanoparticles in PDT can mitigate some of these shortcomings and enhance the targeting ability of PS in order to effectively use PDT against CRC as well as to reduce systemic side effects. Although 2D culture models are widely used in cancer research, they have some limitations. Therefore, 3D models in CRC PDT, particularly multicellular tumour spheroids (MCTS), have attracted researchers. This review summarizes several photosensitizers that are currently used in CRC PDT and gives an overview of recent advances in nanoparticle application for enhanced CRC PDT. In addition, the progress of 3D-model applications in CRC PDT is discussed. Full article
(This article belongs to the Special Issue Nanotechnology in Targeted Drug Delivery)
Show Figures

Graphical abstract

17 pages, 1375 KiB  
Review
Estrogen Receptors as Molecular Targets of Endocrine Therapy for Glioblastoma
by Andrea Magali González-Mora and Patricia Garcia-Lopez
Int. J. Mol. Sci. 2021, 22(22), 12404; https://doi.org/10.3390/ijms222212404 - 17 Nov 2021
Cited by 15 | Viewed by 3973
Abstract
Hormonal factors may participate in the development and progression of glioblastoma, the most aggressive primary tumor of the central nervous system. Many studies have been conducted on the possible involvement of estrogen receptors (ERs) in gliomas. Since there is a tendency for a [...] Read more.
Hormonal factors may participate in the development and progression of glioblastoma, the most aggressive primary tumor of the central nervous system. Many studies have been conducted on the possible involvement of estrogen receptors (ERs) in gliomas. Since there is a tendency for a reduced expression of ERs as the degree of malignancy of such tumors increases, it is important to understand the role of these receptors in the progression and treatment of this disease. ERs belong to the family of nuclear receptors, although they can also be in the plasmatic membrane, cytoplasm and mitochondria. They are classified as estrogen receptors alpha and beta (ER⍺ and ERβ), each with different isoforms that have a distinct function in the organism. ERs regulate multiple physiological and pathological processes through the activation of genomic and nongenomic pathways in the cell. Nevertheless, the role of each isoform in the development and progression of glioblastoma is not completely clear. Diverse in vitro and in vivo studies have shown encouraging results for endocrine therapy as a treatment for gliomas. At the same time, many questions have arisen concerning the nature of ERs as well as the mechanism of action of the proposed drugs. Hence, the aim of the current review is to describe the drugs that could possibly be utilized in endocrine therapy for the treatment of high-grade gliomas, analyze their interaction with ERs, and explore the involvement of these drugs and receptors in resistance to standard chemotherapy. Full article
Show Figures

Figure 1

15 pages, 1022 KiB  
Review
Ferroptosis: A Double-Edged Sword in Gastrointestinal Disease
by Chengfei Xu, Ziling Liu and Jiangwei Xiao
Int. J. Mol. Sci. 2021, 22(22), 12403; https://doi.org/10.3390/ijms222212403 - 17 Nov 2021
Cited by 55 | Viewed by 9119
Abstract
Ferroptosis is a novel form of regulated cell death (RCD) that is typically accompanied by iron accumulation and lipid peroxidation. In contrast to apoptosis, autophagy, and necroptosis, ferroptosis has unique biological processes and pathophysiological characteristics. Since it was first proposed in 2012, ferroptosis [...] Read more.
Ferroptosis is a novel form of regulated cell death (RCD) that is typically accompanied by iron accumulation and lipid peroxidation. In contrast to apoptosis, autophagy, and necroptosis, ferroptosis has unique biological processes and pathophysiological characteristics. Since it was first proposed in 2012, ferroptosis has attracted attention worldwide. Ferroptosis is involved in the progression of multiple diseases and could be a novel therapeutic target in the future. Recently, tremendous progress has been made regarding ferroptosis and gastrointestinal diseases, including intestinal ischemia/reperfusion (I/R) injury, inflammatory bowel disease (IBD), gastric cancer (GC), and colorectal cancer (CRC). In this review, we summarize the recent progress on ferroptosis and its interaction with gastrointestinal diseases. Understanding the role of ferroptosis in gastrointestinal disease pathogenesis could provide novel therapeutic targets for clinical treatment. Full article
Show Figures

Figure 1