17 pages, 4659 KiB  
Article
Volatile Profiling of Magnolia champaca Accessions by Gas Chromatography Mass Spectrometry Coupled with Chemometrics
by Chiranjibi Sahoo, Bibhuti Bhusan Champati, Biswabhusan Dash, Sudipta Jena, Asit Ray, Pratap Chandra Panda, Sanghamitra Nayak and Ambika Sahoo
Molecules 2022, 27(21), 7302; https://doi.org/10.3390/molecules27217302 - 27 Oct 2022
Cited by 12 | Viewed by 3109
Abstract
Magnolia champaca (L.) Baill. ex Pierre of family Magnoliaceae, is a perennial tree with aromatic, ethnobotanical, and medicinal uses. The M. champaca leaf is reported to have a myriad of therapeutic activities, however, there are limited reports available on the chemical composition of [...] Read more.
Magnolia champaca (L.) Baill. ex Pierre of family Magnoliaceae, is a perennial tree with aromatic, ethnobotanical, and medicinal uses. The M. champaca leaf is reported to have a myriad of therapeutic activities, however, there are limited reports available on the chemical composition of the leaf essential oil of M. champaca. The present study explored the variation in the yield and chemical composition of leaf essential oil isolated from 52 accessions of M. champaca. Through hydrodistillation, essential oil yield was obtained, varied in the range of 0.06 ± 0.003% and 0.31 ± 0.015% (v/w) on a fresh weight basis. GC-MS analysis identified a total of 65 phytoconstituents accounting for 90.23 to 98.90% of the total oil. Sesquiterpene hydrocarbons (52.83 to 65.63%) constituted the major fraction followed by sesquiterpene alcohols (14.71 to 22.45%). The essential oils were found to be rich in β-elemene (6.64 to 38.80%), γ-muurolene (4.63 to 22.50%), and β-caryophyllene (1.10 to 20.74%). Chemometrics analyses such as PCA, PLS-DA, sPLS-DA, and cluster analyses such as hierarchical clustering, i.e., dendrogram and partitional clustering, i.e., K-means classified the essential oils of M. champaca populations into three different chemotypes: chemotype I (β-elemene), chemotype II (γ-muurolene) and chemotype III (β-caryophyllene). The chemical polymorphism analyzed in the studied populations would facilitate the selection of chemotypes with specific compounds. The chemotypes identified in the M. champaca populations could be developed as promising bio-resources for conservation and pharmaceutical application and further improvement of the taxa. Full article
(This article belongs to the Special Issue Chemometrics in Analytical Chemistry)
Show Figures

Figure 1

13 pages, 3681 KiB  
Article
Development of Galloyl Antioxidant for Dispersed and Bulk Oils through Incorporation of Branched Phytol Chain
by Shanshan Wang, Hua Wang, Fujie Yan, Jie Wang and Songbai Liu
Molecules 2022, 27(21), 7301; https://doi.org/10.3390/molecules27217301 - 27 Oct 2022
Viewed by 1749
Abstract
In this study, a novel galloyl phytol antioxidant was developed by incorporating the branched phytol chain with gallic acid through mild Steglich esterification. The evaluation of the radical scavenging activity, lipid oxidation in a liposomal model, and glycerol trioleate revealed its superior antioxidant [...] Read more.
In this study, a novel galloyl phytol antioxidant was developed by incorporating the branched phytol chain with gallic acid through mild Steglich esterification. The evaluation of the radical scavenging activity, lipid oxidation in a liposomal model, and glycerol trioleate revealed its superior antioxidant activities in both dispersed and bulk oils. Then, the antioxidant capacity enhancement of galloyl phytol was further explored using thermal gravimetry/differential thermal analysis (TG/DTA), transmission electron microscopy (TEM), and molecular modeling. The EC50 values of GP, GPa, and GE were 0.256, 0.262, and 0.263 mM, respectively, which exhibited comparable DPPH scavenging activities. These investigations unveiled that the branched aliphatic chain enforced the coiled molecular conformation and the unsaturated double bond in the phytol portion further fixed the coiled conformation, which contributed to a diminished aggregation tendency and enhanced antioxidant activities in dispersed and bulk oils. The remarkable antioxidant performance of galloyl phytol suggested intriguing and non-toxic natural antioxidant applications in the food industry, such as effectively inhibiting the oxidation of oil and improvement of the quality and shelf life of the oil, which would contribute to the use of tea resources and extending the tea industry chain. Full article
Show Figures

Graphical abstract

13 pages, 5220 KiB  
Article
A Composition Analysis and an Antibacterial Activity Mechanism Exploration of Essential Oil Obtained from Artemisia giraldii Pamp
by Guiguo Huo, Xu Li, Mohamed Aamer Abubaker, Tingyu Liang, Ji Zhang and Xuelin Chen
Molecules 2022, 27(21), 7300; https://doi.org/10.3390/molecules27217300 - 27 Oct 2022
Cited by 5 | Viewed by 2235
Abstract
The goal of this work was to use the GC-MS technique to explore the chemical components of Artemisia giraldii Pamp essential oil (AgEo) and to uncover its antibacterial activity, specifically the antibacterial mechanism of this essential oil. There were a total of 63 [...] Read more.
The goal of this work was to use the GC-MS technique to explore the chemical components of Artemisia giraldii Pamp essential oil (AgEo) and to uncover its antibacterial activity, specifically the antibacterial mechanism of this essential oil. There were a total of 63 chemical constituents in the AgEo, monoterpenes (10.2%) and sesquiterpenes (30.14%) were found to be the most common chemical components, with camphor (15.68%) coming in first, followed by germacrene D. (15.29%). AgEo displayed significant reducing power and good scavenging ability on hydroxyl radicals, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radicals, and 2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS) radicals, according to antioxidant data. The diameter of the inhibition zone (DIZ) of AgEo against S. aureus and E. coli was (14.00 ± 1.00) mm and (16.33 ± 1.53) mm, respectively; the minimum inhibitory concentration (MIC) of AgEo against E. coli and S. aureus was 3 μL/mL and 6 μL/mL, respectively; and the minimum bactericidal concentration (MBC) of AgEo against E. coli and S. aureus was 6 μL/mL and 12 μL/mL, respectively. The antibacterial curve revealed that 0.5MIC of AgEo may delay bacterial growth while 2MIC of AgEo could totally suppress bacterial growth. The relative conductivity, alkaline phosphatase (AKP) activity, and protein concentration of the bacterial suspension were all higher after the AgEo treatment than in the control group, and increased as the essential oil concentration was raised. In addition, the cell membrane ruptured and atrophy occurred. The study discovered that AgEo is high in active chemicals and can be used as an antibacterial agent against E. coli and S. aureus, which is critical for AgEo’s future research and development. Full article
Show Figures

Figure 1

22 pages, 4555 KiB  
Article
Linagliptin and Vitamin D3 Synergistically Rescue Testicular Steroidogenesis and Spermatogenesis in Cisplatin-Exposed Rats: The Crosstalk of Endoplasmic Reticulum Stress with NF-κB/iNOS Activation
by Rania A. Elrashidy, Esraa M. Zakaria, Asmaa M. Elmaghraby, Rasha E. M. Abd El Aziz, Ranya M. Abdelgalil, Rehab M. Megahed, Asmaa A. Elshiech, Doaa E. A. Salama and Samah E. Ibrahim
Molecules 2022, 27(21), 7299; https://doi.org/10.3390/molecules27217299 - 27 Oct 2022
Cited by 4 | Viewed by 2544
Abstract
This study investigated the therapeutic effect of linagliptin and/or vitamin D3 on testicular steroidogenesis and spermatogenesis in cisplatin-exposed rats including their impact on endoplasmic reticulum (ER) stress and NF-κB/iNOS crosstalk. Cisplatin (7 mg/kg, IP) was injected into adult male albino rats which then [...] Read more.
This study investigated the therapeutic effect of linagliptin and/or vitamin D3 on testicular steroidogenesis and spermatogenesis in cisplatin-exposed rats including their impact on endoplasmic reticulum (ER) stress and NF-κB/iNOS crosstalk. Cisplatin (7 mg/kg, IP) was injected into adult male albino rats which then were orally treated with drug vehicle, linagliptin (3 mg/kg/day), vitamin D3 (10 μg/kg/day) or both drugs for four weeks. Age-matched rats were used as the control group. Serum samples and testes were collected for further analyses. Cisplatin induced testicular weight loss, deteriorated testicular architecture, loss of germ cells and declined serum and intra-testicular testosterone levels, compared to the control group. There was down-regulation of steroidogenic markers including StAR, CYP11A1, HSD3b and HSD17b in cisplatin-exposed rats, compared with controls. Cisplatin-exposed rats showed up-regulation of ER stress markers in testicular tissue along with increased expression of NF-κB and iNOS in spermatogenic and Leydig cells. These perturbations were almost reversed by vitamin D3 or linagliptin. The combined therapy exerted a more remarkable effect on testicular dysfunction than either monotherapy. These findings suggest a novel therapeutic application for linagliptin combined with vitamin D3 to restore testicular architecture, aberrant steroidogenesis and spermatogenesis after cisplatin exposure. These effects may be attributed to suppression of ER stress and NF-kB/iNOS. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

15 pages, 1308 KiB  
Article
Inhibitory Effect of Sodium Alginate Nanoemulsion Coating Containing Myrtle Essential Oil (Myrtus communis L.) on Listeria monocytogenes in Kasar Cheese
by Gökçe Polat Yemiş, Elif Sezer and Hatice Sıçramaz
Molecules 2022, 27(21), 7298; https://doi.org/10.3390/molecules27217298 - 27 Oct 2022
Cited by 17 | Viewed by 2680
Abstract
The present study aimed to characterize the physical properties of nanoemulsion-based sodium alginate edible coatings containing myrtle (Myrtus communis L.) essential oil and to determine its inhibitory effects on Listeria monocytogenes in fresh Kasar cheese during the 24-day storage at 4 °C. [...] Read more.
The present study aimed to characterize the physical properties of nanoemulsion-based sodium alginate edible coatings containing myrtle (Myrtus communis L.) essential oil and to determine its inhibitory effects on Listeria monocytogenes in fresh Kasar cheese during the 24-day storage at 4 °C. The GC-MS analysis showed that the main components of myrtle essential oil were 1,8-cineol (38.64%), α-pinene (30.19%), d-limonene (7.51%), and α-ocimene (6.57%). Myrtle essential oil showed an inhibitory effect on all tested L. monocytogenes strains and this effect significantly increased after ultrasonication. Minimum inhibitory and minimum bactericidal concentrations of myrtle essential oil nanoemulsion were found to be 4.00–4.67 mg/mL and 5.00–7.33 mg/mL, respectively. The antibacterial activity of myrtle essential oil nanoemulsion against L. monocytogenes was confirmed by the membrane integrity and FESEM analyses. Nanoemulsion coatings containing myrtle essential oil showed antibacterial activity against L. monocytogenes with no adverse effects on the physicochemical properties of cheese samples. Nanoemulsion coatings containing 1.0% and 2.0% myrtle essential oil reduced the L. monocytogenes population in cheese during the storage by 0.42 and 0.88 log cfu/g, respectively. These results revealed that nanoemulsion-based alginate edible coatings containing myrtle essential oil have the potential to be used as a natural food preservative. Full article
Show Figures

Graphical abstract

17 pages, 1710 KiB  
Article
Guaianolide Derivatives from the Invasive Xanthium spinosum L.: Evaluation of Their Allelopathic Potential
by Sylvain Baldi, Pascale Bradesi and Alain Muselli
Molecules 2022, 27(21), 7297; https://doi.org/10.3390/molecules27217297 - 27 Oct 2022
Cited by 3 | Viewed by 2168
Abstract
Ziniolide, xantholide B (11α-dihydroziniolide), and 11β-dihydroziniolide, three sesquiterpene lactones with 12,8-guaianolide skeletons, were identified as volatile metabolites from the roots of Xanthium spinosum L., an invasive plant harvested in Corsica. Essential oil, as well as hydrosol and hexane extracts, showed the presence of [...] Read more.
Ziniolide, xantholide B (11α-dihydroziniolide), and 11β-dihydroziniolide, three sesquiterpene lactones with 12,8-guaianolide skeletons, were identified as volatile metabolites from the roots of Xanthium spinosum L., an invasive plant harvested in Corsica. Essential oil, as well as hydrosol and hexane extracts, showed the presence of guaianolide analogues. The study highlights an analytical strategy involving column chromatography, GC-FID, GC-MS, NMR (1D and 2D), and the hemi-synthesis approach, to identify compounds with incomplete or even missing spectral data from the literature. Among them, we reported the 1H- and 13C-NMR data of 11β-dihydroziniolide, which was observed as a natural product for the first time. As secondary metabolites were frequently involved in the dynamic of the dispersion of weed species, the allelopathic effects of X. spinosum root’s volatile metabolites were assessed on seed germination and seedling growth (leek and radish). Essential oil, as well as hydrosol- and microwave-assisted extracts inhibited germination and seedling growth; root metabolite phytotoxicity was demonstrated. Nevertheless, the phytotoxicity of root metabolites was demonstrated with a more marked selectivity to the benefit of the monocotyledonous species compared to the dicotyledonous species. Ziniolide derivatives seem to be strongly involved in allelopathic interactions and could be the key to understanding the invasive mechanisms of weed. Full article
(This article belongs to the Special Issue Natural Products That Might Change Society)
Show Figures

Graphical abstract

19 pages, 2742 KiB  
Article
Streptomyces rochei MS-37 as a Novel Marine Actinobacterium for Green Biosynthesis of Silver Nanoparticles and Their Biomedical Applications
by Sobhy E. Elsilk, Maha A. Khalil, Tamer A. Aboshady, Fatin A. Alsalmi and Sameh S. Ali
Molecules 2022, 27(21), 7296; https://doi.org/10.3390/molecules27217296 - 27 Oct 2022
Cited by 12 | Viewed by 2517
Abstract
Periodontitis, as one of the most common diseases on a global scale, is a public health concern. Microbial resistance to currently available antimicrobial agents is becoming a growing issue in periodontal treatment. As a result, it is critical to develop effective and environmentally [...] Read more.
Periodontitis, as one of the most common diseases on a global scale, is a public health concern. Microbial resistance to currently available antimicrobial agents is becoming a growing issue in periodontal treatment. As a result, it is critical to develop effective and environmentally friendly biomedical approaches to overcome such challenges. The investigation of Streptomyces rochei MS-37’s performance may be the first of its kind as a novel marine actinobacterium for the green biosynthesis of silver nanoparticles (SNPs) and potentials as antibacterial, anti-inflammatory, antibiofilm, and antioxidant candidates suppressing membrane-associated dental infections. Streptomyces rochei MS-37, a new marine actinobacterial strain, was used in this study for the biosynthesis of silver nanoparticles for various biomedical applications. Surface plasmon resonance spectroscopy showed a peak at 429 nm for the SNPs. The SNPs were spherical, tiny (average 23.2 nm by TEM, 59.4 nm by DLS), very stable (−26 mV), and contained capping agents. The minimum inhibitory concentrations of the SNPs that showed potential antibacterial action ranged from 8 to 128 µg/mL. Periodontal pathogens were used to perform qualitative evaluations of microbial adhesion and bacterial penetration through guided tissue regeneration membranes. The findings suggested that the presence of the SNPs could aid in the suppression of membrane-associated infection. Furthermore, when the anti-inflammatory action of the SNPs was tested using nitric oxide radical scavenging capacity and protein denaturation inhibition, it was discovered that the SNPs were extremely efficient at scavenging nitric oxide free radicals and had a strong anti-denaturation impact. The SNPs were found to be more cytotoxic to CAL27 than to human peripheral blood mononuclear cells (PBMCs), with IC50 values of 81.16 µg/mL in PBMCs and 34.03 µg/mL in CAL27. This study’s findings open a new avenue for using marine actinobacteria for silver nanoparticle biosynthesis, which holds great promise for a variety of biomedical applications, in particular periodontal treatment. Full article
Show Figures

Figure 1

17 pages, 718 KiB  
Review
Beyond the Bark: An Overview of the Chemistry and Biological Activities of Selected Bark Essential Oils
by Melanie Graf and Iris Stappen
Molecules 2022, 27(21), 7295; https://doi.org/10.3390/molecules27217295 - 27 Oct 2022
Cited by 9 | Viewed by 2813
Abstract
Essential oils have been used by indigenous peoples for medicinal purposes since ancient times. Their easy availability played an important role. Even today, essential oils are used in various fields—be it as aromatic substances in the food industry, as an aid in antibiotic [...] Read more.
Essential oils have been used by indigenous peoples for medicinal purposes since ancient times. Their easy availability played an important role. Even today, essential oils are used in various fields—be it as aromatic substances in the food industry, as an aid in antibiotic therapy, in aromatherapy, in various household products or in cosmetics. The benefits they bring to the body and health are proven by many sources. Due to their complex composition, they offer properties that will be used more and more in the future. Synergistic effects of various components in an essential oil are also part of the reason for their effectiveness. Infectious diseases will always recur, so it is important to find active ingredients for different therapies or new research approaches. Essential oils extracted from the bark of trees have not been researched as extensively as from other plant components. Therefore, this review will focus on bringing together previous research on selected bark oils to provide an overview of barks that are economically, medicinally, and ethnopharmaceutically relevant. The bark oils described are Cinnamomum verum, Cedrelopsis grevei, Drypetes gossweileriCryptocarya massoy, Vanillosmopsis arborea and Cedrus deodara. Literature from various databases, such as Scifinder, Scopus, Google Scholar, and PubMed, among others, were used. Full article
Show Figures

Figure 1

11 pages, 925 KiB  
Article
Enantioselective Total Synthesis of (R,R)-Blumenol B and d9-(R,R)-Blumenol B
by Shi Min Tan, Shaun W. P. Rees, Rebecca E. Jelley, Jin Wang, Bruno Fedrizzi and David Barker
Molecules 2022, 27(21), 7294; https://doi.org/10.3390/molecules27217294 - 27 Oct 2022
Viewed by 2200
Abstract
C13-norisoprenoids are of particular importance to grapes and wines, as these molecules influence wine aroma and have been shown to significantly contribute to the distinct character of various wine varieties. Blumenol B is a putative precursor to a number of important [...] Read more.
C13-norisoprenoids are of particular importance to grapes and wines, as these molecules influence wine aroma and have been shown to significantly contribute to the distinct character of various wine varieties. Blumenol B is a putative precursor to a number of important wine aroma compounds, including the well-known compounds theaspirone and vitispirane. The enantioselective synthesis of (R,R)-blumenol B from commercially available 4-oxoisophorone was achieved using a short and easily scaleable route, which was then successfully applied to the synthesis of poly-deuterated d9-blumenol B. Full article
(This article belongs to the Special Issue Chemical Synthesis of Natural Products)
Show Figures

Graphical abstract

3 pages, 212 KiB  
Editorial
Special Issue “Applications of Stable Isotope Analysis”
by Antonio V. Herrera-Herrera and Margarita Jambrina-Enríquez
Molecules 2022, 27(21), 7293; https://doi.org/10.3390/molecules27217293 - 27 Oct 2022
Cited by 1 | Viewed by 1425
Abstract
The isotopic composition of matter is controlled by different physical, chemical, and biological mechanisms [...] Full article
(This article belongs to the Special Issue Applications of Stable Isotope Analysis)
16 pages, 3264 KiB  
Article
Carbon Quantum Dots Bridged TiO2/CdIn2S4 toward Photocatalytic Upgrading of Polycyclic Aromatic Hydrocarbons to Benzaldehyde
by Jiangwei Zhang, Fei Yu, Xi Ke, He Yu, Peiyuan Guo, Lei Du, Menglong Zhang and Dongxiang Luo
Molecules 2022, 27(21), 7292; https://doi.org/10.3390/molecules27217292 - 27 Oct 2022
Cited by 6 | Viewed by 2145
Abstract
Conversion of hazardous compounds to value-added chemicals using clean energy possesses massive industrial interest. This applies especially to the hazardous compounds that are frequently released in daily life. In this work, a S-scheme photocatalyst is optimized by rational loading of carbon quantum dots [...] Read more.
Conversion of hazardous compounds to value-added chemicals using clean energy possesses massive industrial interest. This applies especially to the hazardous compounds that are frequently released in daily life. In this work, a S-scheme photocatalyst is optimized by rational loading of carbon quantum dots (CQDs) during the synthetic process. As a bridge, the presence of CQDs between TiO2 and CdIn2S4 improves the electron extraction from TiO2 and supports the charge transport in S-scheme. Thanks to this, the TiO2/CQDs/CdIn2S4 presents outstanding photoactivity in converting the polycyclic aromatic hydrocarbons (PAHs) released by cigarette to value-added benzaldehyde. The optimized photocatalyst performs 87.79% conversion rate and 72.76% selectivity in 1 h reaction under a simulated solar source, as confirmed by FT-IR and GC-MS. A combination of experiments and theoretical calculations are conducted to demonstrate the role of CQDs in TiO2/CQDs/CdIn2S4 toward photocatalysis. Full article
(This article belongs to the Special Issue New Trends in Photochemistry in Eurasia)
Show Figures

Figure 1

15 pages, 2051 KiB  
Article
Magnetically Driven Muco-Inert Janus Nanovehicles for Enhanced Mucus Penetration and Cellular Uptake
by Yue Hao, Shu Bai, Linling Yu and Yan Sun
Molecules 2022, 27(21), 7291; https://doi.org/10.3390/molecules27217291 - 27 Oct 2022
Cited by 3 | Viewed by 3462
Abstract
One of the main challenges of transmucosal drug delivery is that of enabling particles and molecules to move across the mucosal barrier of the mucosal epithelial surface. Inspired by nanovehicles and mucus-penetrating nanoparticles, a magnetically driven, mucus-inert Janus-type nanovehicle (Janus-MMSN-pCB) was fabricated by [...] Read more.
One of the main challenges of transmucosal drug delivery is that of enabling particles and molecules to move across the mucosal barrier of the mucosal epithelial surface. Inspired by nanovehicles and mucus-penetrating nanoparticles, a magnetically driven, mucus-inert Janus-type nanovehicle (Janus-MMSN-pCB) was fabricated by coating the zwitterionic polymer poly(carboxybetaine methacrylate) (pCB) on the mesoporous silica nanorod, which was grown on one side of superparamagnetic Fe3O4 nanoparticle using the sol–gel method. X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and Fourier infrared spectroscopy were used to characterize the structure and morphology of the nanovehicles, proving the success of each synthesis step. The in vitro cell viability assessment of these composites using Calu-3 cell lines indicates that the nanovehicles are biocompatible in nature. Furthermore, the multiparticle tracking, Transwell® system, and cell imaging experimental results demonstrate that both the modification of pCB and the application of a magnetic field effectively accelerated the diffusion of the nanovehicles in the mucus and improved the endocytosis through Calu-3. The favorable cell uptake performance of Janus-MMSN-pCB in mucus systems with/without magnetic driving proves its potential role in the diagnosis, treatment, and imaging of mucosal-related diseases. Full article
(This article belongs to the Special Issue Catalysis, Electronics, Energy and Health at Nanoscale Domain)
Show Figures

Figure 1

17 pages, 4364 KiB  
Article
Preparation of Paclitaxel-Encapsulated Bio-Functionalized Selenium Nanoparticles and Evaluation of Their Efficacy against Cervical Cancer
by Soumya Menon, Santhoshkumar Jayakodi, Kanti Kusum Yadav, Prathap Somu, Mona Isaq, Venkat Kumar Shanmugam, Amballa Chaitanyakumar and Nagaraj Basavegowda
Molecules 2022, 27(21), 7290; https://doi.org/10.3390/molecules27217290 - 27 Oct 2022
Cited by 17 | Viewed by 2724
Abstract
The potentiality of nanomedicine in the cancer treatment being widely recognized in the recent years. In the present investigation, the synergistic effects of chitosan-modified selenium nanoparticles loaded with paclitaxel (PTX-chit-SeNPs) were studied. These selenium nanoparticles were tested for drug release analysis at a [...] Read more.
The potentiality of nanomedicine in the cancer treatment being widely recognized in the recent years. In the present investigation, the synergistic effects of chitosan-modified selenium nanoparticles loaded with paclitaxel (PTX-chit-SeNPs) were studied. These selenium nanoparticles were tested for drug release analysis at a pH of 7.4 and 5.5, and further characterized using FTIR, DLS, zeta potential, and TEM to confirm their morphology, and the encapsulation of the drug was carried out using UPLC analysis. Quantitative evaluation of anti-cancer properties was performed via MTT analysis, apoptosis, gene expression analysis, cell cycle arrest, and over-production of ROS. The unique combination of phytochemicals from the seed extract, chitosan, paclitaxel, and selenium nanoparticles can be effectively utilized to combat cancerous cells. The production of the nanosystem has been demonstrated to be cost-effective and have unique characteristics, and can be utilized for improving future diagnostic approaches. Full article
Show Figures

Figure 1

30 pages, 2173 KiB  
Review
Exosomes as New Generation Vehicles for Drug Delivery: Biomedical Applications and Future Perspectives
by Amarjitsing Rajput, Akansh Varshney, Rashi Bajaj and Varsha Pokharkar
Molecules 2022, 27(21), 7289; https://doi.org/10.3390/molecules27217289 - 27 Oct 2022
Cited by 91 | Viewed by 7096
Abstract
Currently, particular interest among the scientific community is focused on exploring the use of exosomes for several pharmaceutical and biomedical applications. This is due to the identification of the role of exosomes as an excellent intercellular communicator by delivering the requisite cargo comprising [...] Read more.
Currently, particular interest among the scientific community is focused on exploring the use of exosomes for several pharmaceutical and biomedical applications. This is due to the identification of the role of exosomes as an excellent intercellular communicator by delivering the requisite cargo comprising of functional proteins, metabolites and nucleic acids. Exosomes are the smallest extracellular vesicles (EV) with sizes ranging from 30–100 nm and are derived from endosomes. Exosomes have similar surface morphology to cells and act as a signal transduction channel between cells. They encompass different biomolecules, such as proteins, nucleic acids and lipids, thus rendering them naturally as an attractive drug delivery vehicle. Like the other advanced drug delivery systems, such as polymeric nanoparticles and liposomes to encapsulate drug substances, exosomes also gained much attention in enhancing therapeutic activity. Exosomes present many advantages, such as compatibility with living tissues, low toxicity, extended blood circulation, capability to pass contents from one cell to another, non-immunogenic and special targeting of various cells, making them an excellent therapeutic carrier. Exosome-based molecules for drug delivery are still in the early stages of research and clinical trials. The problems and clinical transition issues related to exosome-based drugs need to be overcome using advanced tools for better understanding and systemic evaluation of exosomes. In this current review, we summarize the most up-to-date knowledge about the complex biological journey of exosomes from biogenesis and secretion, isolation techniques, characterization, loading methods, pharmaceutical and therapeutic applications, challenges and future perspectives of exosomes. Full article
Show Figures

Figure 1

12 pages, 2446 KiB  
Article
Planispine A Sensitized Cancer Cells to Cisplatin by Inhibiting the Fanconi Anemia Pathway
by Thangjam Davis Singh, Ningthoujam Indrajit Singh, Khuraijam Mrinalini Devi, Remmei Meiguilungpou, Lhaineichong Khongsai, Lisam Shanjukumar Singh, Naresh Chandra Bal, Ningombam Swapana, Chingakham Brajakishor Singh and Thiyam Ramsing Singh
Molecules 2022, 27(21), 7288; https://doi.org/10.3390/molecules27217288 - 26 Oct 2022
Cited by 4 | Viewed by 2487
Abstract
The use of cisplatin as a chemotherapeutic drug is impeded by the development of drug resistance. Combination therapies of a chemosensitizer for cisplatin have been studied, but with little success, and the search for an effective combination therapy is continuing. Our earlier reports [...] Read more.
The use of cisplatin as a chemotherapeutic drug is impeded by the development of drug resistance. Combination therapies of a chemosensitizer for cisplatin have been studied, but with little success, and the search for an effective combination therapy is continuing. Our earlier reports have shown that Zanthoxylum armatum DC. extract enhances the apoptotic effect of cisplatin in cancer cell lines. In this study, we purified and identified the bioactive phytocompound through bio-assay-guided purification, using column chromatography and HPLC. Chemical characterization using NMR and mass spectrometry revealed the compound as planispine A, with molecular structure C25H30O6 and molecular weight, 426.16 g/mol. Planispine A was found to inhibit cancer cell proliferation in a dose-dependent manner and to sensitize the cancer cells to cisplatin-augmented apoptotic cell death, in a caspase-dependent manner. A combination of planispine A and cisplatin induced S-phase cell cycle arrest, and reduced the expression of survival proteins such as cyclin D1. Interestingly, planispine A inhibits the Fanconi anemia pathway, as shown by reduced FANCD2 foci formation and FANCD2 monoubiquitination, which revealed the molecular mechanism of chemo-sensitization of cancer cells to cisplatin. Evaluation of this combination therapy in cisplatin-resistant tumors may lead to more efficient cisplatin treatment. Full article
(This article belongs to the Special Issue Bioactive Compounds in Pharmaceutical Research)
Show Figures

Graphical abstract