Research on Heavy Metals in Soils and Sediments

A special issue of Soil Systems (ISSN 2571-8789).

Deadline for manuscript submissions: 31 August 2024 | Viewed by 10676

Special Issue Editor


E-Mail Website
Guest Editor
Bio Forschung Austria, 1220 Vienna, Austria
Interests: trace elements (heavy metals, platinum metals, rare earths); phosphorus; iodine—occurrence and analysis; environmental mobility and speciation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Metal pollution, but also metallic trace element deficiencies, remains a matter of concern. This Special Issue will cover the progress of environmental screening in the field (e.g., by IR, XRF or magnetic measurements), to obtain a rapid overview of polluted sites. These may be due to ore formation, mining, waste mismanagement or atmospheric deposition. Detailed analysis should extend the dataset beyond the legally specified Cd, Pb, Hg and As, to Pt and Pd. Selective and sequential dissolution by batch extraction, migration in column studies, or dissolution rates gives an insight into metal mobilities and soil-to-plant transfer, respectively, to benthic organisms and fish fauna. Dry–wet cycles, recrystallization of pedogenic oxides (Fe, Al and Mn) and interactions with humics to form mineral-associated humic complexes lead to transformations of metal speciation in soils and sediments. Available metal excess and deficiencies affect soil life through interactions with soil enzymes, soil bacteria, detritus feeders and fungal biomass. Finally, remediation studies either aim at metal fixation by the addition of sorbents (e.g., red mud, clay minerals, limestone, phosphate), or phytoextraction by accumulator plants, oilseed crops or afforestation.

Dr. Manfred Sager
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Soil Systems is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 1338 KiB  
Article
Nickel Effects on Growth and Phytolith Yield of Grasses in Contaminated Soils
by Enilson de Barros Silva, Múcio Mágno de Melo Farnezi, Lauana Lopes dos Santos, Alexandre Chistofaro Silva, Paulo Henrique Grazziotti, Luís Reynaldo Ferracciú Alleoni, Ingrid Horák-Terra, Sandra Antunes do Nascimento and Bento Gil Uane
Soil Syst. 2024, 8(1), 17; https://doi.org/10.3390/soilsystems8010017 - 26 Jan 2024
Viewed by 1200
Abstract
Nickel (Ni) is extremely toxic to plants at high concentrations. Phytoliths have the potential to sequester the heavy metals absorbed by plants and act as a detoxification mechanism for the plant. The authors of the present study aimed to evaluate the effects of [...] Read more.
Nickel (Ni) is extremely toxic to plants at high concentrations. Phytoliths have the potential to sequester the heavy metals absorbed by plants and act as a detoxification mechanism for the plant. The authors of the present study aimed to evaluate the effects of Ni on the growth and phytolith yield of grasses in two artificially contaminated soils. Two experiments separated by soil types (Typic Quartzipsamment and Rhodic Hapludox) were conducted in a completely randomized design in a 2 × 4 factorial scheme with three replications. The factors were two species of grass (Urochloa decumbens and Megathyrsus maximus) and three concentrations of Ni (20, 40, and 120 mg kg−1) and control treatment. The grasses were influenced by the increase in Ni rates in the soils. Ni exerted a micronutrient function with the addition of 30 mg kg−1 of Ni in soils, but this concentration caused toxicity in grasses. Such a level is lower than the limits imposed by the Brazilian environmental legislation. Higher Ni availability in Typic Quartzipsamment promoted Ni toxicity, with reduced growth and increased phytolith yield in the shoot, increased Ni in the shoot, and Ni occlusion in phytoliths by grasses, in comparison with Rhodic Hapludox. The yield and Ni capture in phytoliths by grasses in Ni-contaminated soils are related to the genetic and physiological differences between grasses and Ni availability in soils. Ni capture by phytoliths indicates that it may be one of the detoxification mechanisms of Urochloa decumbens to Ni contamination, providing additional tolerance. Megathyrsus maximus may be a future grass for the phytoremediation technique in Ni-contaminated soils. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

18 pages, 7664 KiB  
Article
Complex Speciation and Distribution of Iron, Sulfur, and Trace Metals in Coal Mine Soils Reflect Grain- and Sub-Grain-Scale Heterogeneity during Pyrite Oxidative Dissolution
by Md Abu Raihan Chowdhury and David M. Singer
Soil Syst. 2024, 8(1), 2; https://doi.org/10.3390/soilsystems8010002 - 22 Dec 2023
Viewed by 1409
Abstract
Historical coal mining practices have caused various soil and water hazards, particularly through the dumping of mine waste. The primary environmental risk associated with this waste is the leaching of toxic metals from dumps of spoil or refuse into the subsurface soil or [...] Read more.
Historical coal mining practices have caused various soil and water hazards, particularly through the dumping of mine waste. The primary environmental risk associated with this waste is the leaching of toxic metals from dumps of spoil or refuse into the subsurface soil or into nearby water resources. The extent of metal release is controlled via the oxidative dissolution of pyrite and potential re-sequestration through secondary Fe oxides. The characterization of the dominant Fe-bearing phase and the distribution of trace metals associated with these phases was determined via electron microscopy, synchrotron-based X-ray micro-fluorescence (μ-XRF) element and redox mapping from shallow mine soils from an impacted watershed in Appalachian Ohio. The dominant Fe-bearing phases were: (1) unweathered to partially weathered pyrite; (2) pseudomorphic replacement of pyrite with Fe(III) oxides; (3) fine-grained Fe oxide surface coatings; and (4) discrete Fe(III) oxide grains. Thicker secondary coatings and larger particles were sulfate rich, whereas smaller grains and thinner coatings were sulfate poor. The discrete Fe oxide grains exhibited the highest concentrations of Cr, Mn, Ni, and Cu, and sub-grain-scale concentration trends (Mn > Cr > Ni > Cu) were consistent with bulk soil properties. Predicting future metal transport requires an understanding of metal speciation and distribution from the sub-grain scale to the pedon scale. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

14 pages, 716 KiB  
Article
Temporal Changes in Cd Sorption and Plant Bioavailability in Compost-Amended Soils
by Shamim Al Mamun, Niklas J. Lehto, Jo Cavanagh, Richard McDowell, Liv Kellermann and Brett H. Robinson
Soil Syst. 2023, 7(4), 107; https://doi.org/10.3390/soilsystems7040107 - 29 Nov 2023
Viewed by 1415
Abstract
The application of Cd-contaminated phosphate fertiliser has enriched concentrations of this non-essential element in many agricultural soils. Consequently, concentrations of the metal in some agricultural products exceed the Maximum Limit in foods. Composts can reduce the transfer of Cd from soil to plants; [...] Read more.
The application of Cd-contaminated phosphate fertiliser has enriched concentrations of this non-essential element in many agricultural soils. Consequently, concentrations of the metal in some agricultural products exceed the Maximum Limit in foods. Composts can reduce the transfer of Cd from soil to plants; however, it is unclear how long this beneficial effect endures. We aimed to determine temporal changes of phytoavailable Cd in two market garden soils (an Allophanic Orthic Granular Soil and a Recent Silt Loam). Soils were amended with either municipal green waste compost or sawdust and animal waste compost at a rate of 2.5% w/w under three incubation regimes: at 19 °C, at 30 °C, and at 30 °C with additional N added as urea at 0.6 g urea/kg soil added over 1 year. Each replicate was sampled after 1, 5, 9, 13, 21, 31, and 49 weeks, and phytoavailable Cd was estimated through 0.05 M Ca(NO3)2 extraction. Seed potato (Solanum tuberosum), ‘Nadine’ variety, was grown in the Pukekohe Allophanic Orthic Granular Soil, freshly amended with municipal compost and the same soil aged for one year. The concentration of Cd in all samples was analysed using an ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometer). The C concentration in the soil—compost mixtures decreased over the year, with the greatest decreases occurring in the soils incubated at 30 °C with added N. Unexpectedly, the concentration of Ca(NO3)2-extractable Cd in the compost-amended soils did not increase over time and in some cases even decreased. This was confirmed through a pot experiment, which showed the Cd concentration in potato was reduced by 50% in both the freshly amended soil and the amended soil aged for one year. Cadmium immobilisation in soils might be due to both the sorption of Cd by organic matter and the occlusion of sorbed Cd by oxy-hydroxides of iron and aluminium. Over 49 weeks, soluble Cd does not increase as organic matter oxidises. The application of municipal compost to soil will reduce both plant Cd solubility and plant Cd uptake for at least one year in the soils tested. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

14 pages, 2738 KiB  
Article
Heavy Metals in Wetland Ecosystem: Investigating Metal Contamination in Waterbirds via Primary Feathers and Its Effect on Population and Diversity
by Jeganathan Pandiyan, Radjassegarin Arumugam, Khalid A. Al-Ghanim, Nadezhda Sachivkina, Marcello Nicoletti and Marimuthu Govindarajan
Soil Syst. 2023, 7(4), 104; https://doi.org/10.3390/soilsystems7040104 - 16 Nov 2023
Viewed by 1716
Abstract
Wetlands are dynamic ecosystems that provide feeding and nesting grounds for diverse species of waterbirds. The quality of wetland habitat may have an impact on the density, diversity, and species richness of waterbirds. Toxic metal contamination is one of the most significant threats [...] Read more.
Wetlands are dynamic ecosystems that provide feeding and nesting grounds for diverse species of waterbirds. The quality of wetland habitat may have an impact on the density, diversity, and species richness of waterbirds. Toxic metal contamination is one of the most significant threats to wetland habitats. Feathers are a key indicator of heavy metal contamination in avian communities as a non-invasive method. We examined the levels of Arsenic (As), Cadmium (Cd), Cobalt (Co), Chromium (Cr), Copper (Cu), Lead (Pb), Nickel (Ni), and Zinc (Zn) using ICP-AAS and standards of digestion procedure from the primary feathers of 10 distinct species of waterbirds. The study was conducted at four wetlands, viz., Point Calimere Wildlife Sanctuary (Ramsar site); Pallikaranai Marshland (Ramsar site); Perunthottam freshwater lake (unprotected wetland), Tamil Nadu and the Pulicat Lake, Andhra Pradesh, (Ramsar site), India. The Large crested tern had higher concentrations of As, Co, Cr, and Ni. Cu was greater in the Indian pond heron, and Zn was higher in the Grey heron. The accumulation of metals differed among the waterbirds (p < 0.05), and the inter-correlation of metals found positive influences between the tested metals, i.e., Co was positively associated with As, Cr had a positive correlation with As and Co, and Ni was positively correlated with As, Co, Cr, and Cu. In contrast, Pb had a positive association with Cu and Ni. The Zn was associated with Co, Cr and Cu. The level of metals in waterbirds was Zn > Cu > Cr > Ni > Pb > Co > Cd > As. The results showed that metal levels in the primary feathers of waterbirds were greater than the other species of waterbirds examined across the world. Thus, the study emphasizes that managing wetlands and controlling pollution is crucial to saving waterbirds; otherwise, the population and diversity of waterbirds will decline and become a significant threat to waterbird communities. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

9 pages, 1172 KiB  
Communication
Sediments as Sentinels of Pollution Episodes in the Middle Estuary of the Tinto River (SW Spain)
by Luis Miguel Cáceres, Francisco Ruiz, Javier Bermejo, Lucía Fernández, María Luz González-Regalado, Joaquín Rodríguez Vidal, Manuel Abad, Tatiana Izquierdo, Antonio Toscano, Paula Gómez and Verónica Romero
Soil Syst. 2023, 7(4), 95; https://doi.org/10.3390/soilsystems7040095 - 24 Oct 2023
Viewed by 1251
Abstract
Estuaries are excellent environments for identifying pollution episodes that have affected river basins, as their sediments are the final destination of some of the pollutants. This paper studies the geochemical evolution of five elements (As, Co, Cu, Pb, Zn) in a core extracted [...] Read more.
Estuaries are excellent environments for identifying pollution episodes that have affected river basins, as their sediments are the final destination of some of the pollutants. This paper studies the geochemical evolution of five elements (As, Co, Cu, Pb, Zn) in a core extracted from the middle estuary of the Tinto River (SW Spain). The results are based on facies interpretation, ICP atomic emission spectrometry analysis, the application of a regional background to obtain the geoaccumulation index and dating. The main objective of this communication is the detection of natural or anthropogenic pollution episodes in the middle estuary of the Tinto River (SW Spain). Four pollution episodes have been detected: (1) ~5.8 cal. kyr BP, probably caused by natural acid rock drainage processes derived from the oxidation of the Iberian Pyritic Belt deposits found in its drainage basin; (2) 4.7–4.5 kyr BP, coming from the first mining activities and characterized by a significant increase in the concentrations of the five elements analyzed; (3) 1850–1960 interval, coinciding with intensive mining and characterized by increasing values of As and, to a lesser extent, Pb (intensive mining); and (4) the second half of the 20th century, with high element concentrations from mining and industrial effluents. All episodes show an increase in their geochemical classes deduced from the geoaccumulation index. This communication can serve as an example for assessing the impact of different types of pollution in estuarine environments. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 3273 KiB  
Review
Soil Contamination by Heavy Metals and Radionuclides and Related Bioremediation Techniques: A Review
by Yelizaveta Chernysh, Viktoriia Chubur, Iryna Ablieieva, Polina Skvortsova, Olena Yakhnenko, Maksym Skydanenko, Leonid Plyatsuk and Hynek Roubík
Soil Syst. 2024, 8(2), 36; https://doi.org/10.3390/soilsystems8020036 - 22 Mar 2024
Viewed by 891
Abstract
The migration of heavy metals and radionuclides is interrelated, and this study focusses on the interaction and complex influence of various toxicants. The rehabilitation of radioactively contaminated territories has a complex character and is based on scientifically supported measures to restore industrial, economic, [...] Read more.
The migration of heavy metals and radionuclides is interrelated, and this study focusses on the interaction and complex influence of various toxicants. The rehabilitation of radioactively contaminated territories has a complex character and is based on scientifically supported measures to restore industrial, economic, and sociopsychological relations. We aim for the achievement of pre-emergency levels of hygienic norms of radioactive contamination of output products. This, in its sum, allows for further economic activity in these territories without restrictions on the basis of natural actions of autoremediation. Biosorption technologies based on bacterial biomass remain a promising direction for the remediation of soils contaminated with radionuclides and heavy metals that help immobilise and consolidate contaminants. A comprehensive understanding of the biosorption capacity of various preparations allows for the selection of more effective techniques for the elimination of contaminants, as well as the overcoming of differences between laboratory results and industrial use. Observation and monitoring make it possible to evaluate the migration process of heavy metals and radionuclides and identify regions with a disturbed balance of harmful substances. The promising direction of the soil application of phosphogypsum, a by-product of the chemical industry, in bioremediation processes is considered. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

34 pages, 1048 KiB  
Review
Soil Phytomining: Recent Developments—A Review
by Christos Kikis, Georgios Thalassinos and Vasileios Antoniadis
Soil Syst. 2024, 8(1), 8; https://doi.org/10.3390/soilsystems8010008 - 08 Jan 2024
Viewed by 1905
Abstract
Phytomining (PM) is defined as the process of using plants capable of bio-extracting metals from soil in order to explore them economically. This relatively new, innovative method has been gathering significant attention in both the academic and commercial domains. Conventional mining methods are [...] Read more.
Phytomining (PM) is defined as the process of using plants capable of bio-extracting metals from soil in order to explore them economically. This relatively new, innovative method has been gathering significant attention in both the academic and commercial domains. Conventional mining methods are often economically unviable when applied to lean ores, and they can lead to secondary pollution in soil—a situation that applies to all excavated metals. On the other hand, PM is an environmentally friendly and economically viable solution that addresses the growing demands for metal resources, while simultaneously contributing to energy production by harnessing biomass energy. This comprehensive review presents the current PM techniques, challenges, and the hyperaccumulator plant species that may be used for the extraction of the main targeted elements in the process. Typically, the targeted metals are those of economic value, which can later be deposited or sold to various industries. This review also analyzes the factors influencing the economic viability of PM and proposes potential enhancements. Undeniably, PM offers the opportunity for economically sustainable exploration of metal-rich soils, but its full commercial viability remains constrained under current conditions as scientists are actively searching for the identification and utilization of new hyperaccumulator plant species in different locations worldwide, while creating new relationships and business avenues within the mining industry. Overall, this review highlights the current status of PM technology and the plants used, emphasizing the need for further research to enhance its commercial implementation and its potential to assist the mining industry. We conclude that PM, although a relatively new and unexplored concept, may provide economic and environmental benefits to soil end-users and managers who must cultivate on metal-contaminated soils as PM may turn yield shortages (of specific commercial crops) to benefits if high-yield hyperaccumulators are cultivated for industrial valorization of their high metal-content biomass. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

Back to TopTop