Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6330 KiB  
Article
Process-Structure-Property Interdependencies in Non-Isothermal Powder Bed Fusion of Polyamide 12
by Samuel Schlicht, Simon Cholewa and Dietmar Drummer
J. Manuf. Mater. Process. 2023, 7(1), 33; https://doi.org/10.3390/jmmp7010033 - 30 Jan 2023
Cited by 2 | Viewed by 1954
Abstract
Non-isothermal laser-based powder bed fusion (LPBF) of polymers suggests the potential for significantly extending the range of materials applicable for powder-based additive manufacturing of polymers, relying on the absence of a material-specific processing window. To allow for the support-free manufacturing of polymers at [...] Read more.
Non-isothermal laser-based powder bed fusion (LPBF) of polymers suggests the potential for significantly extending the range of materials applicable for powder-based additive manufacturing of polymers, relying on the absence of a material-specific processing window. To allow for the support-free manufacturing of polymers at a build chamber temperature of 25 °C, applied processing strategies comprise the combination of fractal exposure strategies and locally quasi-simultaneous exposure of distinct segments of a particular cross section for minimizing crystallization-induced part deflection. Based on the parameter-dependent control of emerging cooling rates, formed part morphologies and resulting mechanical properties can be modified. Thermographic in situ measurements allow for correlating thermal processing conditions and crystallization kinetics with component-specific mechanical, morphological, and microstructural properties, assessed ex situ. Part morphologies formed at crystallization temperatures below 70 °C, induced by reduced laser exposure times, are characterized by a nano-spherulitic structure, exhibiting an enhanced elongation at break. An ambient temperature of 25 °C is associated with the predominant formation of a combined (α + γ)-phase, induced by the rapid cooling and subsequent laser-induced tempering of distinct layers, yielding a periodic microstructural evolution. The presented results demonstrate a novel approach for obtaining nano-spherulitic morphologies, enabling the exposure-based targeted adaption of morphological properties. Furthermore, the thermographic inline assessment of crystallization kinetics allows for the enhanced understanding of process-morphology interdependencies in laser-based manufacturing processes of semi-crystalline polymers. Full article
(This article belongs to the Special Issue Progress in Powder-Based Additive Manufacturing)
Show Figures

Figure 1

28 pages, 9336 KiB  
Review
Laser Additive Manufacturing of High-Strength Aluminum Alloys: Challenges and Strategies
by Som Dixit and Shunyu Liu
J. Manuf. Mater. Process. 2022, 6(6), 156; https://doi.org/10.3390/jmmp6060156 - 8 Dec 2022
Cited by 8 | Viewed by 5877
Abstract
Metal additive manufacturing (AM)-fabricated high-strength aluminum (HS-Al) alloys (2xxx, 6xxx, and 7xxx) tend to produce fatal metallurgical defects such as porosity and cracks. Since Al is the most important lightweight structural material in automotive and aviation industries, successful printing of HS-Al alloys is [...] Read more.
Metal additive manufacturing (AM)-fabricated high-strength aluminum (HS-Al) alloys (2xxx, 6xxx, and 7xxx) tend to produce fatal metallurgical defects such as porosity and cracks. Since Al is the most important lightweight structural material in automotive and aviation industries, successful printing of HS-Al alloys is in high demand. Therefore, this review focuses on the formation mechanisms and research advancements to address these metallurgical defects. Firstly, the process optimization strategies, including AM parameter optimization, hybrid AM processes, and post-processing treatment, and their effectiveness and limitations have been reviewed thoroughly. However, process optimization can address defects such as porosity, surface roughness, and residual stresses but has limited effectiveness on cracking alleviation. Secondly, the research efforts on composition modification to address cracking in AM of HS-Al alloys are critically discussed. Different from process optimization, composition modification alters the solidification dynamics in AM of HS-Al alloys and hence is considered the most promising route for crack-free printing. Full article
(This article belongs to the Special Issue Design and Additive Manufacturing of Lightweight Composite Structures)
Show Figures

Figure 1

22 pages, 9645 KiB  
Review
Key Technology of Intelligentized Welding Manufacturing and Systems Based on the Internet of Things and Multi-Agent
by Qiang Liu, Chao Chen and Shanben Chen
J. Manuf. Mater. Process. 2022, 6(6), 135; https://doi.org/10.3390/jmmp6060135 - 5 Nov 2022
Cited by 1 | Viewed by 3547
Abstract
With the development of the Internet of Things (IoT), Big Data, Artificial Intelligence technology, and the emergence of modern information technologies such as intelligent manufacturing, welding systems are changing, and intelligentized welding manufacturing and systems (IWMS) utilizing these technologies are attracting attention from [...] Read more.
With the development of the Internet of Things (IoT), Big Data, Artificial Intelligence technology, and the emergence of modern information technologies such as intelligent manufacturing, welding systems are changing, and intelligentized welding manufacturing and systems (IWMS) utilizing these technologies are attracting attention from both academia and industry. This paper investigates sensing technology, multi-information sensor fusion technology, feature recognition technology, the quality prediction method, control method, and intelligent welding production line application in the IWMS. Combining IoT technology and multi-agent systems, a hierarchical structure model welding manufacturing system (IoT-MAS) in the form of “leader-following” was constructed. The multi-agent welding manufacturing system has the advantages of distribution, intelligence, internal coordination and so on. The IoT-MAS consists of several sub-agents, which are divided into five categories according to their functions and internal processing logic. Combined with the functions of the intelligent welding manufacturing system, the agent structure of the whole welding process was proposed, and the matching communication technology and algorithm were designed. The intelligent welding manufacturing system based on IoT-MAS proposed in this paper can effectively solve the integrated design problem of large welding manufacturing systems. Full article
(This article belongs to the Special Issue Machine Intelligence in Welding and Additive Manufacturing)
Show Figures

Figure 1

12 pages, 2270 KiB  
Article
Thermal Post-Processing of 3D Printed Polypropylene Parts for Vacuum Systems
by Pierce J. Mayville, Aliaksei L. Petsiuk and Joshua M. Pearce
J. Manuf. Mater. Process. 2022, 6(5), 98; https://doi.org/10.3390/jmmp6050098 - 8 Sep 2022
Cited by 4 | Viewed by 4581
Abstract
Access to vacuum systems is limited because of economic costs. A rapidly growing approach to reduce the costs of scientific equipment is to combine open-source hardware methods with digital distributed manufacturing with 3D printers. Although high-end 3D printers can manufacture vacuum components, again, [...] Read more.
Access to vacuum systems is limited because of economic costs. A rapidly growing approach to reduce the costs of scientific equipment is to combine open-source hardware methods with digital distributed manufacturing with 3D printers. Although high-end 3D printers can manufacture vacuum components, again, the cost of access to tooling is economically prohibitive. Low-cost material extrusion 3D printing with plastic overcomes the cost issue, but two problems arise when attempting to use plastic in or as part of vacuum systems: the outgassing of polymers and their sealing. To overcome these challenges, this study explores the potential of using post-processing heat treatments to seal 3D printed polypropylene for use in vacuum environments. The effect of infill overlap and heat treatment with a readily available heat gun on 3D printed PP parts was investigated in detail on ISO-standardized KF vacuum fitting parts and with the use of computer vision-based monitoring of vacuum pump down velocities. The results showed that infill overlap and heat treatment both had a large impact on the vacuum pressures obtainable with 3D printed parts. Heat treatment combined with 98% infill reliably sealed parts for use in vacuum systems, which makes the use of low-cost desktop 3D printers viable for manufacturing vacuum components for open scientific hardware. Full article
Show Figures

Figure 1

11 pages, 4164 KiB  
Article
Joining 30 mm Thick Shipbuilding Steel Plates EH36 Using a Process Combination of Hybrid Laser Arc Welding and Submerged Arc Welding
by Sergej Gook, Ahmet Midik, Max Biegler, Andrey Gumenyuk and Michael Rethmeier
J. Manuf. Mater. Process. 2022, 6(4), 84; https://doi.org/10.3390/jmmp6040084 - 4 Aug 2022
Cited by 2 | Viewed by 3283
Abstract
This article presents a cost-effective and reliable method for welding 30 mm thick sheets of shipbuilding steel EH36. The method proposes to perform butt welding in a two-run technique using hybrid laser arc welding (HLAW) and submerged arc welding (SAW). The HLAW is [...] Read more.
This article presents a cost-effective and reliable method for welding 30 mm thick sheets of shipbuilding steel EH36. The method proposes to perform butt welding in a two-run technique using hybrid laser arc welding (HLAW) and submerged arc welding (SAW). The HLAW is performed as a partial penetration weld with a penetration depth of approximately 25 mm. The SAW is carried out as a second run on the opposite side. With a SAW penetration depth of 8 mm, the weld cross-section is closed with the reliable intersection of both passes. The advantages of the proposed welding method are: no need for forming of the HLAW root; the SAW pass can effectively eliminate pores in the HLAW root; the high stability of the welding process regarding the preparation quality of the weld edges. Plasma cut edges can be welded without lack of fusion defects. The weld quality achieved is confirmed by destructive tests. Full article
(This article belongs to the Special Issue Advances in Welding Technology)
Show Figures

Figure 1

20 pages, 13406 KiB  
Article
Laser Additive Manufacturing of Duplex Stainless Steel via Powder Mixture
by Chengsong Cui, Louis Becker, Eric Gärtner, Johannes Boes, Jonathan Lentz, Volker Uhlenwinkel, Matthias Steinbacher, Sebastian Weber and Rainer Fechte-Heinen
J. Manuf. Mater. Process. 2022, 6(4), 72; https://doi.org/10.3390/jmmp6040072 - 2 Jul 2022
Cited by 12 | Viewed by 3273
Abstract
Laser additively manufactured duplex stainless steels contain mostly ferrite in the as-built parts due to rapid solidification of the printed layers. To achieve duplex microstructures (ferrite and austenite in roughly equal proportions) and, thus, a good combination of mechanical properties and corrosion resistance, [...] Read more.
Laser additively manufactured duplex stainless steels contain mostly ferrite in the as-built parts due to rapid solidification of the printed layers. To achieve duplex microstructures (ferrite and austenite in roughly equal proportions) and, thus, a good combination of mechanical properties and corrosion resistance, an austenitic stainless steel powder (X2CrNiMo17-12-2) and a super duplex stainless steel powder (X2CrNiMoN25-7-4) were mixed in different proportions and the powder mixtures were processed via PBF-LB/M (Laser Powder Bed Fusion) under various processing conditions by varying the laser power and the laser scanning speed. The optimal process parameters for dense as-built parts were determined by means of light optical microscopy and density measurements. The austenitic and ferritic phase formation of the mixed alloys was significantly influenced by the chemical composition adjusted by powder mixing and the laser energy input during PBF-LB/M. The austenite content increases, on the one hand, with an increasing proportion of X2CrNiMo17-12-2 in the powder mixtures and on the other hand with increasing laser energy input. The latter phenomenon could be attributed to a slower solidification and a higher melt pool homogeneity with increasing energy input influencing the phase formation during solidification and cooling. The desired duplex microstructures could be achieved by mixing the X2CrNiMo17-12-2 powder and the X2CrNiMoN25-7-4 powder at a specific mixing ratio and building with the optimal PBF-LB/M parameters. Full article
(This article belongs to the Special Issue Laser-Based Manufacturing II)
Show Figures

Figure 1

19 pages, 4628 KiB  
Article
On the Accurate Prediction of Residual Stress in a Three-Pass Slot Nickel-Base Repair Weld by Numerical Simulations
by Vasileios Akrivos, Ondrej Muransky, Lionel Depradeux, Michael C. Smith, Anastasia Vasileiou, Viorel Deaconu and Priyesh Kapadia
J. Manuf. Mater. Process. 2022, 6(3), 61; https://doi.org/10.3390/jmmp6030061 - 1 Jun 2022
Cited by 2 | Viewed by 2444
Abstract
The activities within a European network to develop accurate experimental and numerical methods to assess residual stresses in structural weldments are reported. The NeT Task Group 6 or NeT-TG6 project examined an Alloy 600 plate containing a three-pass slot weld made with Alloy [...] Read more.
The activities within a European network to develop accurate experimental and numerical methods to assess residual stresses in structural weldments are reported. The NeT Task Group 6 or NeT-TG6 project examined an Alloy 600 plate containing a three-pass slot weld made with Alloy 82 consumables. A number of identical specimens were fabricated and detailed records of the manufacturing history were kept. Parallel measurement and simulation round robins were performed. Residual stresses were measured using neutron diffraction via five different instruments. The acquired database is large enough to generate reliable mean profiles, to identify clear outliers, and to establish the systematic uncertainty associated with this non-destructive technique. NeT-TG6 gives a valuable insight into the real-world variability of diffraction-based residual stress measurements, and forms a reliable foundation against which to benchmark other measurement methods. The mean measured profiles were used to validate the accuracy achieved by the network in the prediction of residual stresses. Full article
Show Figures

Figure 1

13 pages, 4768 KiB  
Article
Effects of Magnetic Abrasive Finishing on Microstructure and Mechanical Properties of Inconel 718 Processed by Laser Powder Bed Fusion
by Yunhao Zhao, Jason Ratay, Kun Li, Hitomi Yamaguchi and Wei Xiong
J. Manuf. Mater. Process. 2022, 6(2), 43; https://doi.org/10.3390/jmmp6020043 - 8 Apr 2022
Cited by 6 | Viewed by 2787
Abstract
Surface finishing is challenging in the context of additively manufactured components with complex geometries. Magnetic abrasive finishing (MAF) is a promising surface finishing technology that can refine the surface quality of components with complex shapes produced by additive manufacturing. However, there is insufficient [...] Read more.
Surface finishing is challenging in the context of additively manufactured components with complex geometries. Magnetic abrasive finishing (MAF) is a promising surface finishing technology that can refine the surface quality of components with complex shapes produced by additive manufacturing. However, there is insufficient study regarding the impact of MAF on microstructure–property relationships for additively manufactured builds, which is critical for evaluating mechanical performance. In this work, we studied the effects of different combinations of MAF and heat treatment steps on the microstructure–property relationships of Inconel 718 superalloys made by laser powder bed fusion (LPBF). The application of MAF was found to significantly reduce the surface roughness and refine the grain size of aged alloys. Moreover, MAF was able to increase the alloy elongation, which could be further influenced by the sequence of MAF and different heat treatment steps. The highest elongation could be achieved when MAF was performed between homogenization and aging processes. This work indicates that an effective combination of surface finishing and heat treatment is critical for the improvement of alloy performance. Furthermore, it demonstrates a promising solution for improving the performance of LPBF Inconel 718 by integrating MAF and heat treatment, which provides new perspectives on the post-processing optimization of additively manufactured alloys. Full article
Show Figures

Figure 1

13 pages, 19741 KiB  
Article
Top Surface Roughness Modeling for Robotic Wire Arc Additive Manufacturing
by Heping Chen , Ahmed Yaseer and Yuming Zhang 
J. Manuf. Mater. Process. 2022, 6(2), 39; https://doi.org/10.3390/jmmp6020039 - 21 Mar 2022
Cited by 8 | Viewed by 3984
Abstract
Wire Arc Additive Manufacturing (WAAM) has many applications in fabricating complex metal parts. However, controlling surface roughness is very challenging in WAAM processes. Typically, machining methods are applied to reduce the surface roughness after a part is fabricated, which is costly and ineffective. [...] Read more.
Wire Arc Additive Manufacturing (WAAM) has many applications in fabricating complex metal parts. However, controlling surface roughness is very challenging in WAAM processes. Typically, machining methods are applied to reduce the surface roughness after a part is fabricated, which is costly and ineffective. Therefore, controlling the WAAM process parameters to achieve better surface roughness is important. This paper proposes a machine learning method based on Gaussian Process Regression to construct a model between the WAAM process parameters and top surface roughness. In order to measure the top surface roughness of a manufactured part, a 3D laser measurement system is developed. The experimental datasets are collected and then divided into training and testing datasets. A top surface roughness model is then constructed using the training datasets and verified using the testing datasets. Experimental results demonstrate that the proposed method achieves less than 50 μm accuracy in surface roughness prediction. Full article
(This article belongs to the Special Issue Machine Intelligence in Welding and Additive Manufacturing)
Show Figures

Figure 1

22 pages, 17301 KiB  
Article
Effect of Rotation Speed and Steel Microstructure on Joint Formation in Friction Stir Spot Welding of Al Alloy to DP Steel
by Hadi Torkamani, Javier Vivas Méndez, Clement Lecart, Egoitz Aldanondo Begiristain, Pedro Alvarez Moro and Marta-Lena Antti
J. Manuf. Mater. Process. 2022, 6(1), 24; https://doi.org/10.3390/jmmp6010024 - 15 Feb 2022
Cited by 3 | Viewed by 2800
Abstract
In this work, friction stir spot welding of 5754 aluminum alloy to dual phase steel was investigated using two different ratios of martensite and ferrite (0.38 and 0.61) for steel sheet initial microstructure and varying tool rotation speed (800, 1200 and 2000 rpm). [...] Read more.
In this work, friction stir spot welding of 5754 aluminum alloy to dual phase steel was investigated using two different ratios of martensite and ferrite (0.38 and 0.61) for steel sheet initial microstructure and varying tool rotation speed (800, 1200 and 2000 rpm). The effect of these parameters on the joint formation was evaluated by studying the plunging force response during the process and the main characteristics of the joint at (i) macrolevel, i.e., hook morphology and bond width, and (ii) microlevel, i.e., steel hook and sheet microstructure and intermetallic compounds. The plunging force was reduced by increased tool rotation speed while there was no significant effect from the initial steel microstructure ratio of martensite and ferrite on the plunging force. The macrostructural characterization of the joints showed that the hook morphology and bond width were affected by the steel sheet initial microstructures as well as by the tool rotation speed and by the material flow driver; tool pin or shoulder. At microstructural level, a progressive variation in the ratio of martensite and ferrite was observed for the steel hook and sheet microstructure. The zones closer to the tool presented a fully martensitic microstructure while the zones away from the tool showed a gradual increase in the ferrite amount until reaching the ratio of ferrite and martensite of the steel sheet initial microstructure. Different types of FexAly intermetallic compounds were found in three zones of the joint; the hook tips, in the hooks close to the exit hole and in the corner of the exit hole. These compounds were characterized by a brittle behavior with hardness values varying from 456 to 937 HV01. Full article
(This article belongs to the Special Issue Frontiers in Friction Stir Welding and Processing)
Show Figures

Figure 1

21 pages, 7108 KiB  
Article
Microstructure and Mechanical Properties of Ti-6Al-4V Additively Manufactured by Electron Beam Melting with 3D Part Nesting and Powder Reuse Influences
by Priti Wanjara, David Backman, Fatih Sikan, Javad Gholipour, Robert Amos, Prakash Patnaik and Mathieu Brochu
J. Manuf. Mater. Process. 2022, 6(1), 21; https://doi.org/10.3390/jmmp6010021 - 1 Feb 2022
Cited by 20 | Viewed by 5224
Abstract
To better support the transition to more industrial uses of additive manufacturing, this study examined the use of an Arcam Q20+ industrial 3D printer for producing heavily nested Ti-6Al-4V parts with both in-specification (IS) and out of specification (OS) oxygen content in reused [...] Read more.
To better support the transition to more industrial uses of additive manufacturing, this study examined the use of an Arcam Q20+ industrial 3D printer for producing heavily nested Ti-6Al-4V parts with both in-specification (IS) and out of specification (OS) oxygen content in reused grade 5 powder chemistries. Both the OS and IS powder chemistries were evaluated to understand their impact on build integrity and on static and fatigue performance. The results from our evaluations showed that controlling the bed preheat temperature in the Q20+ to relatively low values (326–556 °C) was effective in limiting microstructural coarsening during the long build time and enabled adequate/balanced performance vis à vis the tensile strength and ductility. Overall, the tensile properties of the IS Ti-6Al-4V material in the as-built and machined states fully met the requirements of ASTM F2924-14. By contrast, the ductility was compromised at oxygen levels above 0.2 wt.% (OS) in Ti-6Al-4V produced by EBM. Removal of the surface layer by machining increased the consistency and performance of the IS and OS Ti-6Al-4V materials. The fatigue behaviour of the EBM Ti-6Al-4V material was in the range of properties produced by casting. Due to the strong influence of both the surface finish and oxygen content on the fatigue strength, the IS Ti-6Al-4V material exhibited the highest performance, with results that were in the range of parts that had been cast plus hot isostatically pressed. Full article
(This article belongs to the Special Issue Advances in Metal Additive Manufacturing/3D Printing)
Show Figures

Figure 1

20 pages, 5499 KiB  
Article
Microstructure Evolution in Inconel 718 Produced by Powder Bed Fusion Additive Manufacturing
by Judy Schneider, Laura Farris, Gert Nolze, Stefan Reinsch, Grzegorz Cios, Tomasz Tokarski and Sean Thompson
J. Manuf. Mater. Process. 2022, 6(1), 20; https://doi.org/10.3390/jmmp6010020 - 29 Jan 2022
Cited by 8 | Viewed by 5257
Abstract
Inconel 718 is a precipitation strengthened, nickel-based super alloy of interest for the Additive Manufacturing (AM) of low volume, complex parts to reduce production time and cost compared to conventional subtractive processes. The AM process involves repeated rapid melting, solidification and reheating, which [...] Read more.
Inconel 718 is a precipitation strengthened, nickel-based super alloy of interest for the Additive Manufacturing (AM) of low volume, complex parts to reduce production time and cost compared to conventional subtractive processes. The AM process involves repeated rapid melting, solidification and reheating, which exposes the material to non-equilibrium conditions that affect elemental segregation and the subsequent formation of solidification phases, either beneficial or detrimental. These variations are difficult to characterize due to the small length scale within the micron sized melt pool. To understand how the non-equilibrium conditions affect the initial solidification phases and their critical temperatures, a multi-length scale, multi modal approach has been taken to evaluate various methods for identifying the initial phases formed in the as-built Inconel 718 produced by laser-powder bed fusion (L-PBF) additive manufacturing (AM). Using a range of characterization tools from the bulk differential thermal analysis (DTA) and x-ray diffraction (XRD) to spatially resolved images using a variety of electron microscopy tools, a better understanding is obtained of how these minor phases can be properly identified regarding the amount and size, morphology and distribution. Using the most promising characterization techniques for investigation of the as-built specimens, those techniques were used to evaluate the specimens after various heat treatments. During the sequence of heat treatments, the initial as-built dendritic structures recrystallized into well-defined grains whose size was dependent on the temperature. Although the resulting strength was similar in all heat treated specimens, the elongation increased as the grain size was refined due to differences in the precipitated phase distribution and morphology. Full article
(This article belongs to the Topic Additive Manufacturing)
Show Figures

Figure 1

24 pages, 101637 KiB  
Review
Vat Photopolymerization Additive Manufacturing of Functionally Graded Materials: A Review
by Serkan Nohut and Martin Schwentenwein
J. Manuf. Mater. Process. 2022, 6(1), 17; https://doi.org/10.3390/jmmp6010017 - 21 Jan 2022
Cited by 33 | Viewed by 7372
Abstract
Functionally Graded Materials (FGMs) offer discrete or continuously changing properties/compositions over the volume of the parts. The widespread application of FGMs was not rapid enough in the past due to limitations of the manufacturing methods. Significant developments in manufacturing technologies especially in Additive [...] Read more.
Functionally Graded Materials (FGMs) offer discrete or continuously changing properties/compositions over the volume of the parts. The widespread application of FGMs was not rapid enough in the past due to limitations of the manufacturing methods. Significant developments in manufacturing technologies especially in Additive Manufacturing (AM) enable us nowadays to manufacture materials with specified changes over the volume/surface of components. The use of AM methods for the manufacturing of FGMs may allow us to compensate for some drawbacks of conventional methods and to produce complex and near-net-shaped structures with better control of gradients in a cost-efficient way. Vat Photopolymerization (VP), a type of AM method that works according to the principle of curing liquid photopolymer resin layer-by-layer, has gained in recent years high importance due to its advantages such as low cost, high surface quality control, no need to support structures, no limitation in the material. This article reviews the state-of-art and future potential of using VP methods for FGM manufacturing. It was concluded that improvements in printer hardware setup and software, design aspects and printing methodologies will accelerate the use of VP methods for FGMs manufacturing. Full article
Show Figures

Figure 1

34 pages, 6919 KiB  
Review
A Review on the Processing of Aero-Turbine Blade Using 3D Print Techniques
by Ayush Sinha, Biswajit Swain, Asit Behera, Priyabrata Mallick, Saswat Kumar Samal, H. M. Vishwanatha and Ajit Behera
J. Manuf. Mater. Process. 2022, 6(1), 16; https://doi.org/10.3390/jmmp6010016 - 21 Jan 2022
Cited by 27 | Viewed by 17410
Abstract
Additive manufacturing (AM) has proven to be the preferred process over traditional processes in a wide range of industries. This review article focused on the progressive development of aero-turbine blades from conventional manufacturing processes to the additive manufacturing process. AM is known as [...] Read more.
Additive manufacturing (AM) has proven to be the preferred process over traditional processes in a wide range of industries. This review article focused on the progressive development of aero-turbine blades from conventional manufacturing processes to the additive manufacturing process. AM is known as a 3D printing process involving rapid prototyping and a layer-by-layer construction process that can develop a turbine blade with a wide variety of options to modify the turbine blade design and reduce the cost and weight compared to the conventional production mode. This article describes various AM techniques suitable for manufacturing high-temperature turbine blades such as selective laser melting, selective laser sintering, electron beam melting, laser engineering net shaping, and electron beam free form fabrication. The associated parameters of AM such as particle size and shape, powder bed density, residual stresses, porosity, and roughness are discussed here. Full article
(This article belongs to the Special Issue Advances in Material Forming)
Show Figures

Figure 1

36 pages, 9316 KiB  
Review
Advanced Processing and Machining of Tungsten and Its Alloys
by Samuel Omole, Alexander Lunt, Simon Kirk and Alborz Shokrani
J. Manuf. Mater. Process. 2022, 6(1), 15; https://doi.org/10.3390/jmmp6010015 - 20 Jan 2022
Cited by 14 | Viewed by 7865
Abstract
Tungsten is a refractory metal with the highest melting temperature and density of all metals in this group. These properties, together with the high thermal conductivity and strength, make tungsten the ideal material for high-temperature structural use in fusion energy and other applications. [...] Read more.
Tungsten is a refractory metal with the highest melting temperature and density of all metals in this group. These properties, together with the high thermal conductivity and strength, make tungsten the ideal material for high-temperature structural use in fusion energy and other applications. It is widely agreed that the manufacture of components with complex geometries is crucial for scaling and optimizing power plant designs. However, there are challenges associated with the large-scale processing and manufacturing of parts made from tungsten and its alloys which limit the production of these complex geometries. These challenges stem from the high ductile-to-brittle transition temperature (DBTT), as well as the strength and hardness of these parts. Processing methods, such as powder metallurgy and additive manufacturing, can generate near-net-shaped components. However, subtractive post-processing techniques are required to complement these methods. This paper provides an in-depth exploration and discussion of different processing and manufacturing methods for tungsten and identifies the challenges and gaps associated with each approach. It includes conventional and unconventional machining processes, as well as research on improving the ductility of tungsten using various methods, such as alloying, thermomechanical treatment, and grain structure refinement. Full article
(This article belongs to the Special Issue Anniversary Review and Feature Papers)
Show Figures

Figure 1

32 pages, 24409 KiB  
Review
Review on Additive Manufacturing of Multi-Material Parts: Progress and Challenges
by Seymur Hasanov, Suhas Alkunte, Mithila Rajeshirke, Ankit Gupta, Orkhan Huseynov, Ismail Fidan, Frank Alifui-Segbaya and Allan Rennie
J. Manuf. Mater. Process. 2022, 6(1), 4; https://doi.org/10.3390/jmmp6010004 - 27 Dec 2021
Cited by 99 | Viewed by 16106
Abstract
Additive manufacturing has already been established as a highly versatile manufacturing technique with demonstrated potential to completely transform conventional manufacturing in the future. The objective of this paper is to review the latest progress and challenges associated with the fabrication of multi-material parts [...] Read more.
Additive manufacturing has already been established as a highly versatile manufacturing technique with demonstrated potential to completely transform conventional manufacturing in the future. The objective of this paper is to review the latest progress and challenges associated with the fabrication of multi-material parts using additive manufacturing technologies. Various manufacturing processes and materials used to produce functional components were investigated and summarized. The latest applications of multi-material additive manufacturing (MMAM) in the automotive, aerospace, biomedical and dentistry fields were demonstrated. An investigation on the current challenges was also carried out to predict the future direction of MMAM processes. It was concluded that further research and development is needed in the design of multi-material interfaces, manufacturing processes and the material compatibility of MMAM parts. Full article
(This article belongs to the Special Issue Anniversary Review and Feature Papers)
Show Figures

Figure 1

22 pages, 5772 KiB  
Article
Evaluation of Maraging Steel Produced Using Hybrid Additive/Subtractive Manufacturing
by Sheida Sarafan, Priti Wanjara, Javad Gholipour, Fabrice Bernier, Mahmoud Osman, Fatih Sikan, Marjan Molavi-Zarandi, Josh Soost and Mathieu Brochu
J. Manuf. Mater. Process. 2021, 5(4), 107; https://doi.org/10.3390/jmmp5040107 - 12 Oct 2021
Cited by 17 | Viewed by 4873
Abstract
Hybrid manufacturing is often used to describe a combination of additive and subtractive processes in the same build envelope. In this research study, hybrid manufacturing of 18Ni-300 maraging steel was investigated using a Matsuura LUMEX Avance-25 system that integrates metal additive manufacturing using [...] Read more.
Hybrid manufacturing is often used to describe a combination of additive and subtractive processes in the same build envelope. In this research study, hybrid manufacturing of 18Ni-300 maraging steel was investigated using a Matsuura LUMEX Avance-25 system that integrates metal additive manufacturing using laser powder bed fusion (LPBF) processing with high-speed machining. A series of benchmarking coupons were additively printed at four different power levels (160 W, 240 W, 320 W, 380 W) and with the integration of sequential machining passes after every 10 deposited layers, as well as final finishing of selected surfaces. Using non-contact three-dimensional laser scanning, inspection of the final geometry of the 18Ni-300 maraging steel coupons against the computer-aided design (CAD) model indicated the good capability of the Matsuura LUMEX Avance-25 system for net-shape manufacturing. Linear and areal roughness measurements of the surfaces showed average Ra/Sa values of 8.02–14.64 µm for the as-printed walls versus 0.32–0.80 µm for the machined walls/faces. Using Archimedes and helium (He) gas pycnometry methods, the part density was measured to be lowest for coupons produced at 160 W (relative density of 93.3–98.5%) relative to those at high power levels of 240 W to 380 W (relative density of 99.0–99.8%). This finding agreed well with the results of the porosity size distribution determined through X-ray micro-computed tomography (µCT). Evaluation of the static tensile properties indicated that the coupons manufactured at the lowest power of 160 W were ~30% lower in strength, 24% lower in stiffness, and more than 80% lower in ductility relative to higher power conditions (240 W to 380 W) due to the lower density at 160 W. Full article
(This article belongs to the Special Issue Metal Additive Manufacturing and Its Post Processing Techniques)
Show Figures

Figure 1

23 pages, 3493 KiB  
Review
Friction Stir Processing on the Tribological, Corrosion, and Erosion Properties of Steel: A Review
by Alessandro M. Ralls, Ashish K. Kasar and Pradeep L. Menezes
J. Manuf. Mater. Process. 2021, 5(3), 97; https://doi.org/10.3390/jmmp5030097 - 3 Sep 2021
Cited by 28 | Viewed by 3856
Abstract
The eventual material degradation of steel components in bio-implant, marine, and high-temperature applications is a critical issue that can have widespread negative ramifications from a safety and economic point of view. Stemming from their tribological, corrosion, and erosion-based properties, there is an increasing [...] Read more.
The eventual material degradation of steel components in bio-implant, marine, and high-temperature applications is a critical issue that can have widespread negative ramifications from a safety and economic point of view. Stemming from their tribological, corrosion, and erosion-based properties, there is an increasing need to address these issues effectively. As one solution, surface processing techniques have been proposed to improve these properties. However, common techniques tend to suffer from issues spanning from their practicality to their high costs and negative environmental impacts. To address these issues, friction-stir-processing (FSP) has been one technique that has been increasingly utilized due to its cost effective, non-polluting nature. By inducing large amounts of strain and plastic deformation, dynamic recrystallization occurs which can largely influence the tribological, corrosion, and erosion properties via surface hardening, grain refinement, and improvement to passive layer formation. This review aims to accumulate the current knowledge of steel FSP and to breakdown the key factors which enable its metallurgical improvement. Having this understanding, a thorough analysis of these processing variables in relation to their tribological, corrosion, and erosion properties is presented. We finally then prospect future directions for this research with suggestions on how this research can continue to expand. Full article
(This article belongs to the Special Issue Anniversary Review and Feature Papers)
Show Figures

Figure 1

16 pages, 3094 KiB  
Article
Surface Qualification Toolpath Optimization for Hybrid Manufacturing
by Austen Thien, Christopher Saldana and Thomas Kurfess
J. Manuf. Mater. Process. 2021, 5(3), 94; https://doi.org/10.3390/jmmp5030094 - 27 Aug 2021
Cited by 3 | Viewed by 2704
Abstract
Hybrid manufacturing machine tools have great potential to revolutionize manufacturing by combining both additive manufacturing (AM) and subtractive manufacturing (SM) processes on the same machine tool. A prominent issue that can occur when going from AM to SM is that the SM process [...] Read more.
Hybrid manufacturing machine tools have great potential to revolutionize manufacturing by combining both additive manufacturing (AM) and subtractive manufacturing (SM) processes on the same machine tool. A prominent issue that can occur when going from AM to SM is that the SM process toolpath does not account for geometric discrepancies caused by the previous AM step, which leads to increased production times and tool wear, particularly when wire-based directed energy deposition (DED) is used as the AM process. This work discusses a methodology for approximating a part’s surface topology using on-machine contact probing and formulating an optimized SM toolpath using the surface topology approximation. Three different geometric surface approximations were used: triangular, trapezoidal, and a hybrid of both. SM toolpaths were created using each geometric approximation and assessed according to three objectives: reducing total machining time, reducing surface roughness, and reducing cutting force. Different prioritization scenarios of the optimization goals were also investigated. The optimal surface approximation that yielded the most improvement in the optimization was determined to be the hybrid surface topology approximation. Furthermore, it was shown that when the machining time or cutting force optimization goals were prioritized, there was little improvement in the other optimization goals. Full article
(This article belongs to the Special Issue Direct Digital Manufacturing with Additive Manufacturing/3D Printing)
Show Figures

Figure 1

17 pages, 48594 KiB  
Review
The Present State of Surface Conditioning in Cutting and Grinding
by Benedict Stampfer, Germán González, Michael Gerstenmeyer and Volker Schulze
J. Manuf. Mater. Process. 2021, 5(3), 92; https://doi.org/10.3390/jmmp5030092 - 20 Aug 2021
Cited by 17 | Viewed by 3129
Abstract
All manufacturing processes have an impact on the surface layer state of a component, which in turn significantly determines the properties of parts in service. Although these effects should certainly be exploited, knowledge on the conditioning of the surfaces during the final cutting [...] Read more.
All manufacturing processes have an impact on the surface layer state of a component, which in turn significantly determines the properties of parts in service. Although these effects should certainly be exploited, knowledge on the conditioning of the surfaces during the final cutting and abrasive process of metal components is still only extremely limited today. The key challenges in regard comprise the process-oriented acquisition of suitable measurement signals and their use in robust process control with regard to the surface layer conditions. By mastering these challenges, the present demands for sustainability in production on the one hand and the material requirements in terms of lightweight construction strength on the other hand can be successfully met. In this review article completely new surface conditioning approaches are presented, which originate from the Priority Program 2086 of the Deutsche Forschungsgemeinschaft (DFG). Full article
(This article belongs to the Special Issue Surface Integrity in Machining and Post-processing)
Show Figures

Figure 1

18 pages, 8472 KiB  
Article
Experimental and Numerical Investigations into Magnetic Pulse Welding of Aluminum Alloy 6016 to Hardened Steel 22MnB5
by Rico Drehmann, Christian Scheffler, Sven Winter, Verena Psyk, Verena Kräusel and Thomas Lampke
J. Manuf. Mater. Process. 2021, 5(3), 66; https://doi.org/10.3390/jmmp5030066 - 24 Jun 2021
Cited by 10 | Viewed by 2915
Abstract
By means of magnetic pulse welding (MPW), high-quality joints can be produced without some of the disadvantages of conventional welding, such as thermal softening, distortion, and other undesired temperature-induced effects. However, the range of materials that have successfully been joined by MPW is [...] Read more.
By means of magnetic pulse welding (MPW), high-quality joints can be produced without some of the disadvantages of conventional welding, such as thermal softening, distortion, and other undesired temperature-induced effects. However, the range of materials that have successfully been joined by MPW is mainly limited to comparatively soft materials such as copper or aluminum. This paper presents an extensive experimental study leading to a process window for the successful MPW of aluminum alloy 6016 (AA6016) to hardened 22MnB5 steel sheets. This window is defined by the impact velocity and impact angle of the AA6016 flyer. These parameters, which are significantly dependent on the initial gap between flyer and target, the charging energy of the pulse power generator, and the lateral position of the flyer in relation to the inductor, were determined by a macroscopic coupled multiphysics simulation in LS-DYNA. The welded samples were mechanically characterized by lap shear tests. Furthermore, the bonding zone was analyzed by optical and scanning electron microscopy including energy-dispersive X-ray spectroscopy as well as nanoindentation. It was found that the samples exhibited a wavy interface and a transition zone consisting of Al-rich intermetallic phases. Samples with comparatively thin and therefore crack-free transition zones showed a 45% higher shear tensile strength resulting in failure in the aluminum base material. Full article
(This article belongs to the Special Issue Impulse-Based Manufacturing Technologies)
Show Figures

Figure 1

18 pages, 8549 KiB  
Article
Sonotrodes for Ultrasonic Welding of Titanium/CFRP-Joints—Materials Selection and Design
by Moritz Liesegang, Yuan Yu, Tilmann Beck and Frank Balle
J. Manuf. Mater. Process. 2021, 5(2), 61; https://doi.org/10.3390/jmmp5020061 - 12 Jun 2021
Cited by 7 | Viewed by 5844
Abstract
Ultrasonic welding of titanium alloy Ti6Al4V to carbon fibre reinforced polymer (CFRP) at 20 kHz frequency requires suitable welding tools, so called sonotrodes. The basic function of ultrasonic welding sonotrodes is to oscillate with displacement amplitudes typically up to 50 µm at frequencies [...] Read more.
Ultrasonic welding of titanium alloy Ti6Al4V to carbon fibre reinforced polymer (CFRP) at 20 kHz frequency requires suitable welding tools, so called sonotrodes. The basic function of ultrasonic welding sonotrodes is to oscillate with displacement amplitudes typically up to 50 µm at frequencies close to the eigenfrequency of the oscillation unit. Material properties, the geometry of the sonotrode, and the sonotrode tip topography together determine the longevity of the sonotrode. Durable sonotrodes for ultrasonic welding of high-strength joining partners, e.g., titanium alloys, have not been investigated so far. In this paper, finite element simulations were used to establish a suitable design assuring the oscillation of a longitudinal eigenmode at the operation frequency of the welding machine and to calculate local mechanical stresses. The primary aim of this work is to design a sonotrode that can be used to join high-strength materials such as Ti6Al4V by ultrasonic welding considering the longevity of the welding tools and high-strength joints. Material, sonotrode geometry, and sonotrode tip topography were designed and investigated experimentally to identify the most promising sonotrode design for continuous ultrasonic welding of Ti6AlV4 and CFRP. Eigenfrequency and modal shape were measured in order to examine the reliability of the calculations and to compare the performance of all investigated sonotrodes. Full article
Show Figures

Figure 1

23 pages, 59271 KiB  
Review
A Review of Post-Processing Technologies in Additive Manufacturing
by Xing Peng, Lingbao Kong, Jerry Ying Hsi Fuh and Hao Wang
J. Manuf. Mater. Process. 2021, 5(2), 38; https://doi.org/10.3390/jmmp5020038 - 18 Apr 2021
Cited by 102 | Viewed by 13357
Abstract
Additive manufacturing (AM) technology has rapidly evolved with research advances related to AM processes, materials, and designs. The advantages of AM over conventional techniques include an augmented capability to produce parts with complex geometries, operational flexibility, and reduced production time. However, AM processes [...] Read more.
Additive manufacturing (AM) technology has rapidly evolved with research advances related to AM processes, materials, and designs. The advantages of AM over conventional techniques include an augmented capability to produce parts with complex geometries, operational flexibility, and reduced production time. However, AM processes also face critical issues, such as poor surface quality and inadequate mechanical properties. Therefore, several post-processing technologies are applied to improve the surface quality of the additively manufactured parts. This work aims to document post-processing technologies and their applications concerning different AM processes. Various types of post-process treatments are reviewed and their integrations with AM process are discussed. Full article
(This article belongs to the Special Issue Metal Additive Manufacturing and Its Post Processing Techniques)
Show Figures

Figure 1

19 pages, 30831 KiB  
Article
The Performance of Polycrystalline Diamond (PCD) Tools Machined by Abrasive Grinding and Electrical Discharge Grinding (EDG) in High-Speed Turning
by Guangxian Li, Ge Wu, Wencheng Pan, Rizwan Abdul Rahman Rashid, Suresh Palanisamy and Songlin Ding
J. Manuf. Mater. Process. 2021, 5(2), 34; https://doi.org/10.3390/jmmp5020034 - 12 Apr 2021
Cited by 10 | Viewed by 4130
Abstract
Polycrystalline diamond (PCD) tools are widely used in industry due to their outstanding physical properties. However, the ultra-high hardness of PCD significantly limits the machining efficiency of conventional abrasive grinding processes, which are utilized to manufacture PCD tools. In contrast, electrical discharge grinding [...] Read more.
Polycrystalline diamond (PCD) tools are widely used in industry due to their outstanding physical properties. However, the ultra-high hardness of PCD significantly limits the machining efficiency of conventional abrasive grinding processes, which are utilized to manufacture PCD tools. In contrast, electrical discharge grinding (EDG) has significantly higher machining efficiency because of its unique material removal mechanism. In this study, the quality and performance of PCD tools machined by abrasive grinding and EDG were investigated. The performance of cutting tools consisted of different PCD materials was tested by high-speed turning of titanium alloy Ti6Al4V. Flank wear and crater wear were investigated by analyzing the worn profile, micro morphology, chemical decomposition, and cutting forces. The results showed that an adhesive-abrasive process dominated the processes of flank wear and crater wear. Tool material loss in the wear process was caused by the development of thermal cracks. The development of PCD tools’ wear made of small-sized diamond grains was a steady adhesion-abrasion process without any catastrophic damage. In contrast, a large-scale fracture happened in the wear process of PCD tools made of large-sized diamond grains. Adhesive wear was more severe on the PCD tools machined by EDG. Full article
(This article belongs to the Special Issue Advances in Multi-Axis Machining)
Show Figures

Figure 1

12 pages, 3077 KiB  
Article
Dexel-Based Simulation of Directed Energy Deposition Additive Manufacturing
by Volker Böß, Berend Denkena, Marc-André Dittrich, Talash Malek and Sven Friebe
J. Manuf. Mater. Process. 2021, 5(1), 9; https://doi.org/10.3390/jmmp5010009 - 11 Jan 2021
Cited by 4 | Viewed by 3978
Abstract
Additive manufacturing is typically a flexible alternative to conventional manufacturing processes. However, manufacturing costs increase due to the effort required to experimentally determine optimum process parameters for customized products or small batches. Therefore, simulation models are needed in order to reduce the amount [...] Read more.
Additive manufacturing is typically a flexible alternative to conventional manufacturing processes. However, manufacturing costs increase due to the effort required to experimentally determine optimum process parameters for customized products or small batches. Therefore, simulation models are needed in order to reduce the amount of effort necessary for experimental testing. For this purpose, a novel technological simulation method for directed energy deposition additive manufacturing is presented here. The Dexel-based simulation allows modeling of additive manufacturing of varying geometric shapes by considering multi-axis machine tool kinematics and local process conditions. The simulation approach can be combined with the simulation of subtractive processes, which enables integrated digital process chains. Full article
(This article belongs to the Special Issue Advances in Modelling of Machining Operations)
Show Figures

Figure 1

12 pages, 5944 KiB  
Article
Hybrid Additive Manufacturing of Collector Coins
by João P. M. Pragana, Stephan Rosenthal, Ivo M. F. Bragança, Carlos M. A. Silva, A. Erman Tekkaya and Paulo A. F. Martins
J. Manuf. Mater. Process. 2020, 4(4), 115; https://doi.org/10.3390/jmmp4040115 - 9 Dec 2020
Cited by 7 | Viewed by 3427
Abstract
The objective of this paper is to present a new hybrid additive manufacturing route for fabricating collector coins with complex, intricate contoured holes. The new manufacturing route combines metal deposition by additive manufacturing with metal cutting and forming, and its application is illustrated [...] Read more.
The objective of this paper is to present a new hybrid additive manufacturing route for fabricating collector coins with complex, intricate contoured holes. The new manufacturing route combines metal deposition by additive manufacturing with metal cutting and forming, and its application is illustrated with an example consisting of a prototype coin made from stainless steel AISI 316L. Experimentation and finite element analysis of the coin minting operation with the in-house computer program i-form show that the blanks produced by additive manufacturing and metal cutting can withstand the high compressive pressures that are attained during the embossing and impressing of lettering and other reliefs on the coin surfaces. The presentation allows concluding that hybrid additive manufacturing opens the way to the production of innovative collector coins with geometric features that are radically different from those that are currently available in the market. Full article
(This article belongs to the Special Issue Metal Forming and Joining)
Show Figures

Graphical abstract

27 pages, 5875 KiB  
Review
On the Fabrication of Metallic Single Crystal Turbine Blades with a Commentary on Repair via Additive Manufacturing
by Nicole Marie Angel and Amrita Basak
J. Manuf. Mater. Process. 2020, 4(4), 101; https://doi.org/10.3390/jmmp4040101 - 26 Oct 2020
Cited by 23 | Viewed by 16142
Abstract
The turbine section of aircraft engines (both commercial and military) is an example of one of the most hostile environments as the components in this section typically operate at upwards of 1650 °C in the presence of corrosive and oxidative gases. The blades [...] Read more.
The turbine section of aircraft engines (both commercial and military) is an example of one of the most hostile environments as the components in this section typically operate at upwards of 1650 °C in the presence of corrosive and oxidative gases. The blades are at the heart of the turbine section as they extract energy from the hot gases to generate work. The turbine blades are typically fabricated using investment casting, and depending on the casting complexity, they generally display one of the three common microstructures (i.e., equiaxed or polycrystalline, directionally solidified, and single crystal). Single crystal casting is exotic as several steps of the casting process are traditionally hands-on. Due to the complex production process involving several prototyping iterations, the blade castings have a significant cost associated with them. For example, a set of 40 single crystal turbine blades costs above USD 600,000 and requires 60–90 weeks for production. Additionally, if the components suffer from material loss due to prolonged service or manufacturing defects, the traditional manufacturing methods cannot restore the parent metallurgy at the damage locations. Hence, there is a significant interest in developing additive manufacturing (AM) technologies that can repair the single crystal turbine blades. Despite the blades’ criticality in aircraft propulsion, there is currently no review article that summarizes the metallurgy, production process, failure mechanisms, and AM-based repair methods of the single crystal turbine blades. To address this existing gap, this review paper starts with a discussion on the composition of the single crystal superalloys, describes the traditional fabrication methods for the metallic single crystal turbine blades, estimates the material and energy loss when the blades are scrapped or reverted, and provides a summary of the AM technologies that are currently being investigated for their repair potential. In conclusion, based on the literature reviewed, this paper identifies new avenues for research and development approaches for advancing the fabrication and repair of single crystal turbine blades. Full article
Show Figures

Figure 1

16 pages, 5438 KiB  
Article
A Study on Strengthening Mechanical Properties of a Punch Mold for Cutting by Using an HWS Powder Material and a DED Semi-AM Method of Metal 3D Printing
by Seong-Woong Choi, Yong-Seok Kim, Young-Jin Yum and Soon-Yong Yang
J. Manuf. Mater. Process. 2020, 4(4), 98; https://doi.org/10.3390/jmmp4040098 - 27 Sep 2020
Cited by 4 | Viewed by 4029
Abstract
The post-processing (punching or trimming) of high-strength parts reinforced by hot stamping requires punch molds with improved mechanical properties in hardness, resistance to wear, and toughness. In this study, a semi-additive manufacturing (semi-AM) method of heterogeneous materials was proposed to strengthen these properties [...] Read more.
The post-processing (punching or trimming) of high-strength parts reinforced by hot stamping requires punch molds with improved mechanical properties in hardness, resistance to wear, and toughness. In this study, a semi-additive manufacturing (semi-AM) method of heterogeneous materials was proposed to strengthen these properties using high wear resistance steel (HWS) powder and directed energy deposition (DED) technology. To verify these mechanical properties as a material for the punch mold for cutting, specimens were prepared and tested by a semi-AM method of heterogeneous material. The test results of the HWS additive material by the semi-AM method proposed in this study are as follows: the hardness was 60.59–62.0 HRc, which was like the Bulk D2 specimen. The wear resistance was about 4.2 times compared to that of the D2 specimen; the toughness was about 4.0 times that of the bulk D2 specimen; the compressive strength was about 1.45 times that of the bulk D2 specimen; the true density showed 100% with no porosity. Moreover, the absorption energy was 59.0 J in a multi-semi-AM specimen of heterogeneous materials having an intermediate buffer layer (P21 powder material). The semi-AM method of heterogeneous materials presented in this study could be applied as a method to strengthen the punch mold for cutting. In addition, the multi-semi-AM method of heterogeneous materials will be able to control the mechanical properties of the additive material. Full article
(This article belongs to the Special Issue Additive Manufacturing and Device Applications)
Show Figures

Figure 1

22 pages, 1782 KiB  
Article
Simulation of Smart Factory Processes Applying Multi-Agent-Systems—A Knowledge Management Perspective
by Mareike Dornhöfer, Simon Sack, Johannes Zenkert and Madjid Fathi
J. Manuf. Mater. Process. 2020, 4(3), 89; https://doi.org/10.3390/jmmp4030089 - 9 Sep 2020
Cited by 9 | Viewed by 6194
Abstract
The implementation of Industry 4.0 and smart factory concepts changes the ways of manufacturing and production and requires the combination and interaction of different technologies and systems. The need for rapid implementation is steadily increasing as customers demand individualized products which are only [...] Read more.
The implementation of Industry 4.0 and smart factory concepts changes the ways of manufacturing and production and requires the combination and interaction of different technologies and systems. The need for rapid implementation is steadily increasing as customers demand individualized products which are only possible if the production unit is smart and flexible. However, an existing factory cannot be transformed easily into a smart factory, especially not during operational mode. Therefore, designers and engineers require solutions which help to simulate the aspired change beforehand, thus running realistic pre-tests without disturbing operations and production. New product lines may also be tested beforehand. Data and the deduced knowledge are key factors of the said transformation. One idea for simulation is applying artificial intelligence, in this case the method of multi-agent-systems (MAS), to simulate the inter-dependencies of different production units based on individually configured orders. Once the smart factory is running additional machine learning methods for feedback data of the different machine units may be applied for generating knowledge for improvement of processes and decision making. This paper describes the necessary interaction of manufacturing and knowledge-based solutions before showing an MAS use case implementation of a production line using Anylogic. Full article
(This article belongs to the Special Issue Cyber Physical Production Systems)
Show Figures

Figure 1

20 pages, 6900 KiB  
Article
Pattern Recognition in Multivariate Time Series: Towards an Automated Event Detection Method for Smart Manufacturing Systems
by Vadim Kapp, Marvin Carl May, Gisela Lanza and Thorsten Wuest
J. Manuf. Mater. Process. 2020, 4(3), 88; https://doi.org/10.3390/jmmp4030088 - 5 Sep 2020
Cited by 21 | Viewed by 8082
Abstract
This paper presents a framework to utilize multivariate time series data to automatically identify reoccurring events, e.g., resembling failure patterns in real-world manufacturing data by combining selected data mining techniques. The use case revolves around the auxiliary polymer manufacturing process of drying and [...] Read more.
This paper presents a framework to utilize multivariate time series data to automatically identify reoccurring events, e.g., resembling failure patterns in real-world manufacturing data by combining selected data mining techniques. The use case revolves around the auxiliary polymer manufacturing process of drying and feeding plastic granulate to extrusion or injection molding machines. The overall framework presented in this paper includes a comparison of two different approaches towards the identification of unique patterns in the real-world industrial data set. The first approach uses a subsequent heuristic segmentation and clustering approach, the second branch features a collaborative method with a built-in time dependency structure at its core (TICC). Both alternatives have been facilitated by a standard principle component analysis PCA (feature fusion) and a hyperparameter optimization (TPE) approach. The performance of the corresponding approaches was evaluated through established and commonly accepted metrics in the field of (unsupervised) machine learning. The results suggest the existence of several common failure sources (patterns) for the machine. Insights such as these automatically detected events can be harnessed to develop an advanced monitoring method to predict upcoming failures, ultimately reducing unplanned machine downtime in the future. Full article
(This article belongs to the Special Issue AI Applications in Smart and Advanced Manufacturing)
Show Figures

Figure 1

29 pages, 11405 KiB  
Review
A Review on Strain Gradient Plasticity Approaches in Simulation of Manufacturing Processes
by Raffaele Russo, Franck Andrés Girot Mata, Samuel Forest and Dimitri Jacquin
J. Manuf. Mater. Process. 2020, 4(3), 87; https://doi.org/10.3390/jmmp4030087 - 3 Sep 2020
Cited by 18 | Viewed by 3528
Abstract
Predicting the performances of a manufactured part is extremely important, especially for industries in which there is almost no room for uncertainties, such as aeronautical or automotive. Simulations performed by means of numerical methods such as Finite Element Methods represent a powerful instrument [...] Read more.
Predicting the performances of a manufactured part is extremely important, especially for industries in which there is almost no room for uncertainties, such as aeronautical or automotive. Simulations performed by means of numerical methods such as Finite Element Methods represent a powerful instrument in achieving high level of predictability. However, some particular combinations of manufactured materials and manufacturing processes might lead to unfavorable conditions in which the classical mathematical models used to predict the behavior of the continuum are not anymore able to deliver predictions that are in good agreement with experimental evidence. Since the first evidences of the shortcomings of the classical model were highlighted, many non-classical continuum mechanics theories have been developed, and most of them introduce dependencies at different levels with the Plastic Strain Gradient. This manuscript aims at gathering the milestone contributions among the Strain Gradient Plasticity Theories developed so far, with the object of exploring the way they interface with the requirements posed by the challenges in simulating manufacturing operations. Finally, the most relevant examples of the applications of Strain Gradient Plasticity Theories for manufacturing simulations have been reported from literature. Full article
(This article belongs to the Special Issue Optimization and Simulation of Solid State Manufacturing Processes)
Show Figures

Figure 1

14 pages, 5198 KiB  
Review
Review of Shearing Processes of High Strength Steel Sheets
by Ken-ichiro Mori
J. Manuf. Mater. Process. 2020, 4(2), 54; https://doi.org/10.3390/jmmp4020054 - 7 Jun 2020
Cited by 23 | Viewed by 6339
Abstract
Shearing processes of high strength steel sheets increasingly applied to lightweight automobile parts were reviewed. With the increase in strength of the high strength steel sheets, shearing operations become hard. First, the sheared edge quality in shearing of high strength steel sheets and [...] Read more.
Shearing processes of high strength steel sheets increasingly applied to lightweight automobile parts were reviewed. With the increase in strength of the high strength steel sheets, shearing operations become hard. First, the sheared edge quality in shearing of high strength steel sheets and the effects on the formability and fatigue strength were shown. Next, ironing processes with a taper punch and a punched slug, a slight clearance punching with a punch having a small round corner and a thickening process of the sheared edge were explained as processes for improving the sheared edge quality. Finally, hydrogen-induced delayed fractures of cold-sheared ultra-high strength steel sheets and of hot-trimmed parts were evaluated. Full article
Show Figures

Figure 1

12 pages, 5248 KiB  
Article
Conduction-Based Thermally Assisted Micromilling Process for Cutting Difficult-to-Machine Materials
by Timo Platt, Alexander Meijer and Dirk Biermann
J. Manuf. Mater. Process. 2020, 4(2), 34; https://doi.org/10.3390/jmmp4020034 - 24 Apr 2020
Cited by 10 | Viewed by 6276
Abstract
The increasing demand for complex and wear-resistant forming tools made of difficult-to-machine materials requires efficient manufacturing processes. In terms of high-strength materials; highly suitable processes such as micromilling are limited in their potential due to the increased tool loads and the resulting tool [...] Read more.
The increasing demand for complex and wear-resistant forming tools made of difficult-to-machine materials requires efficient manufacturing processes. In terms of high-strength materials; highly suitable processes such as micromilling are limited in their potential due to the increased tool loads and the resulting tool wear. This promotes hybrid manufacturing processes that offer approaches to increase the performance. In this paper; conduction-based thermally assisted micromilling using a prototype device to homogeneously heat the entire workpiece is investigated. By varying the workpiece temperature by 20 °C < TW < 500 °C; a highly durable high-speed steel (HSS) AISI M3:2 (63 HRC) and a hot-work steel (HWS) AISI H11 (53 HRC) were machined using PVD-TiAlN coated micro-end milling tools (d = 1 mm). The influence of the workpiece temperature on central process conditions; such as tool wear and achievable surface quality; are determined. As expected; the temporary thermal softening of the materials leads to a reduction in the cutting forces and; thus; in the resulting tool wear for specific configurations of the thermal assistance. While only minor effects are detected regarding the surface topography; a significant reduction in the burr height is achieved. Full article
(This article belongs to the Special Issue Advanced Manufacturing and Machining Processes)
Show Figures

Graphical abstract

27 pages, 17449 KiB  
Article
Determination of Material and Failure Characteristics for High-Speed Forming via High-Speed Testing and Inverse Numerical Simulation
by Verena Psyk, Christian Scheffler, Marc Tulke, Sven Winter, Christina Guilleaume and Alexander Brosius
J. Manuf. Mater. Process. 2020, 4(2), 31; https://doi.org/10.3390/jmmp4020031 - 15 Apr 2020
Cited by 16 | Viewed by 4625
Abstract
In conventional forming processes, quasi-static conditions are a good approximation and numerical process optimization is the state of the art in industrial practice. Nevertheless, there is still a substantial need for research in the field of identification of material parameters. In production technologies [...] Read more.
In conventional forming processes, quasi-static conditions are a good approximation and numerical process optimization is the state of the art in industrial practice. Nevertheless, there is still a substantial need for research in the field of identification of material parameters. In production technologies with high forming velocities, it is no longer acceptable to neglect the dependency of the hardening on the forming speed. Therefore, a method for determining material characteristics in processes with high forming speeds was developed by designing and implementing a test setup and an inverse parameter identification. Two acceleration concepts were realized: a pneumatically driven one and an electromagnetically driven one. The method was verified for a mild steel and an aluminum alloy proving that the identified material parameters allow numerical modeling of high-speed processes with good accuracy. The determined material parameters for steel show significant differences for different stress states. For specimen geometries with predominantly uniaxial tensile strain at forming speeds in the order of 104–105/s the determined yield stress was nearly twice as high compared to shear samples; an effect which does not occur under quasi-static loading. This trend suggests a triaxiality-dependent rate dependence, which might be attributed to shear band induced strain localization and adiabatic heating. Full article
Show Figures

Figure 1

19 pages, 3898 KiB  
Article
Machining Phenomenon Twin Construction for Industry 4.0: A Case of Surface Roughness
by Angkush Kumar Ghosh, AMM Sharif Ullah, Akihiko Kubo, Takeshi Akamatsu and Doriana Marilena D’Addona
J. Manuf. Mater. Process. 2020, 4(1), 11; https://doi.org/10.3390/jmmp4010011 - 11 Feb 2020
Cited by 22 | Viewed by 4658
Abstract
Industry 4.0 requires phenomenon twins to functionalize the relevant systems (e.g., cyber-physical systems). A phenomenon twin means a computable virtual abstraction of a real phenomenon. In order to systematize the construction process of a phenomenon twin, this study proposes a system defined as [...] Read more.
Industry 4.0 requires phenomenon twins to functionalize the relevant systems (e.g., cyber-physical systems). A phenomenon twin means a computable virtual abstraction of a real phenomenon. In order to systematize the construction process of a phenomenon twin, this study proposes a system defined as the phenomenon twin construction system. It consists of three components, namely the input, processing, and output components. Among these components, the processing component is the most critical one that digitally models, simulates, and validates a given phenomenon extracting information from the input component. What kind of modeling, simulation, and validation approaches should be used while constructing the processing component for a given phenomenon is a research question. This study answers this question using the case of surface roughness—a complex phenomenon associated with all material removal processes. Accordingly, this study shows that for modeling the surface roughness of a machined surface, the approach called semantic modeling is more effective than the conventional approach called the Markov chain. It is also found that to validate whether or not a simulated surface roughness resembles the expected roughness, the outcomes of the possibility distribution-based computing and DNA-based computing are more effective than the outcomes of a conventional computing wherein the arithmetic mean height of surface roughness is calculated. Thus, apart from the conventional computing approaches, the leading edge computational intelligence-based approaches can digitize manufacturing processes more effectively. Full article
(This article belongs to the Special Issue Intelligent Machining and Grinding)
Show Figures

Figure 1

30 pages, 17365 KiB  
Article
Benchmarking of Laser Powder Bed Fusion Machines
by Mandaná Moshiri, Stefano Candeo, Simone Carmignato, Sankhya Mohanty and Guido Tosello
J. Manuf. Mater. Process. 2019, 3(4), 85; https://doi.org/10.3390/jmmp3040085 - 1 Oct 2019
Cited by 24 | Viewed by 6421
Abstract
This paper presents the methodology and results of an extensive benchmarking of laser powder bed fusion (LPBF) machines conducted across five top machine producers and two end users. The objective was to understand the influence of the individual machine on the final quality [...] Read more.
This paper presents the methodology and results of an extensive benchmarking of laser powder bed fusion (LPBF) machines conducted across five top machine producers and two end users. The objective was to understand the influence of the individual machine on the final quality of predesigned specimens, given a specific material and from multiple perspectives, in order to assess the current capabilities and limitations of the technology and compare them with the capabilities of an 11-year-old machine belonging to one of the end users participating in this investigation. The collected results give a clear representation of the status of LPBF technology considering its maturity in terms of process capabilities and potential applications in a production environment. Full article
Show Figures

Figure 1

30 pages, 2227 KiB  
Review
A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics
by Arup Dey and Nita Yodo
J. Manuf. Mater. Process. 2019, 3(3), 64; https://doi.org/10.3390/jmmp3030064 - 29 Jul 2019
Cited by 373 | Viewed by 17864
Abstract
Fused deposition modeling (FDM) is an additive manufacturing (AM) process that is often used to fabricate geometrically complex shaped prototypes and parts. It is gaining popularity as it reduces cycle time for product development without the need for expensive tools. However, the commercialization [...] Read more.
Fused deposition modeling (FDM) is an additive manufacturing (AM) process that is often used to fabricate geometrically complex shaped prototypes and parts. It is gaining popularity as it reduces cycle time for product development without the need for expensive tools. However, the commercialization of FDM technology in various industrial applications is currently limited due to several shortcomings, such as insufficient mechanical properties, poor surface quality, and low dimensional accuracy. The qualities of FDM-produced products are affected by various process parameters, for example, layer thickness, build orientation, raster width, or print speed. The setting of process parameters and their range depends on the section of FDM machines. Filament materials, nozzle dimensions, and the type of machine determine the range of various parameters. The optimum setting of parameters is deemed to improve the qualities of three-dimensional (3D) printed parts and may reduce post-production work. This paper intensively reviews state-of-the-art literature on the influence of parameters on part qualities and the existing work on process parameter optimization. Additionally, the shortcomings of existing works are identified, challenges and opportunities to work in this field are evaluated, and directions for future research in this field are suggested. Full article
Show Figures

Figure 1

15 pages, 4862 KiB  
Article
Dimensional Quality and Distortion Analysis of Thin-Walled Alloy Parts of AlSi10Mg Manufactured by Selective Laser Melting
by Altaf Ahmed, Arfan Majeed, Zahid Atta and Guozhu Jia
J. Manuf. Mater. Process. 2019, 3(2), 51; https://doi.org/10.3390/jmmp3020051 - 21 Jun 2019
Cited by 47 | Viewed by 5047
Abstract
The quality and reliability in additive manufacturing is an emerging area. To ensure process quality and reliability, the influence of all process parameters and conditions needs to be understood. The product quality and reliability characteristics, i.e., dimensional accuracy, precision, repeatability, and reproducibility are [...] Read more.
The quality and reliability in additive manufacturing is an emerging area. To ensure process quality and reliability, the influence of all process parameters and conditions needs to be understood. The product quality and reliability characteristics, i.e., dimensional accuracy, precision, repeatability, and reproducibility are mostly affected by inherent and systematic manufacturing process variations. This paper presents research on dimensional quality and distortion analysis of AlSi10Mg thin-walled parts developed by a selective laser melting technique. The input process parameters were fixed, and the impact of inherent process variation on dimensional accuracy and precision was studied. The process stability and variability were examined under repeatability and reproducibility conditions. The sample length (horizontal dimension) results revealed a 0.05 mm maximum dimensional error, 0.0197 mm repeatability, and 0.0169 mm reproducibility. Similarly, in sample height (vertical dimension) results, 0.258 mm maximum dimensional error, 0.0237 mm repeatability, and 0.0863 mm reproducibility were observed. The effect of varying design thickness on thickness accuracy was analyzed, and regression analysis performed. The maximum 0.038 mm error and 0.018 mm standard deviation was observed for the 1 mm thickness sample, which significantly decreased for sample thickness ≥2 mm. The % error decreased exponentially with increasing sample thickness. The distortion analysis was performed to explore the effect of sample thickness on part distortion. The 0.5 mm thickness sample shows a very high distortion comparatively, and it is reduced significantly for >0.5 mm thickness samples. The study is further extended to examine the effect of solution heat treatment and artificial aging on the accuracy, precision, and distortion; however, it did not improve the results. Conclusively, the sample dimensions, i.e., length and height, have shown fluctuations due to inherent process characteristics under repeatability and reproducibility conditions. The ANOVA results revealed that sample length means are not statistically significantly different, whereas sample height means are significantly different. The horizontal dimensions in the xy-plane have better accuracy and precision compared to the vertical dimension in the z-axis. The accuracy and precision increased, whereas part distortion decreased with increasing thickness. Full article
(This article belongs to the Special Issue Selective Laser Melting: Materials and Applications)
Show Figures

Figure 1

22 pages, 4603 KiB  
Review
On Coating Techniques for Surface Protection: A Review
by Behzad Fotovvati, Navid Namdari and Amir Dehghanghadikolaei
J. Manuf. Mater. Process. 2019, 3(1), 28; https://doi.org/10.3390/jmmp3010028 - 25 Mar 2019
Cited by 347 | Viewed by 25148
Abstract
A wide variety of coating methods and materials are available for different coating applications with a common purpose of protecting a part or structure exposed to mechanical or chemical damage. A benefit of this protective function is to decrease manufacturing cost since fabrication [...] Read more.
A wide variety of coating methods and materials are available for different coating applications with a common purpose of protecting a part or structure exposed to mechanical or chemical damage. A benefit of this protective function is to decrease manufacturing cost since fabrication of new parts is not needed. Available coating materials include hard and stiff metallic alloys, ceramics, bio-glasses, polymers, and engineered plastic materials, giving designers a variety freedom of choices for durable protection. To date, numerous processes such as physical/chemical vapor deposition, micro-arc oxidation, sol–gel, thermal spraying, and electrodeposition processes have been introduced and investigated. Although each of these processes provides advantages, there are always drawbacks limiting their application. However, there are many solutions to overcome deficiencies of coating techniques by using the benefits of each process in a multi-method coating. In this article, these coating methods are categorized, and compared. By developing more advanced coating techniques and materials it is possible to enhance the qualities of protection in the future. Full article
Show Figures

Figure 1

13 pages, 4093 KiB  
Article
Optimization of Laser Powder Bed Fusion Processing Using a Combination of Melt Pool Modeling and Design of Experiment Approaches: Density Control
by Morgan Letenneur, Alena Kreitcberg and Vladimir Brailovski
J. Manuf. Mater. Process. 2019, 3(1), 21; https://doi.org/10.3390/jmmp3010021 - 21 Feb 2019
Cited by 70 | Viewed by 9559
Abstract
A simplified analytical model of the laser powder bed fusion (LPBF) process was used to develop a novel density prediction approach that can be adapted for any given powder feedstock and LPBF system. First, calibration coupons were built using IN625, Ti64 and Fe [...] Read more.
A simplified analytical model of the laser powder bed fusion (LPBF) process was used to develop a novel density prediction approach that can be adapted for any given powder feedstock and LPBF system. First, calibration coupons were built using IN625, Ti64 and Fe powders and a specific LPBF system. These coupons were manufactured using the predetermined ranges of laser power, scanning speed, hatching space, and layer thickness, and their densities were measured using conventional material characterization techniques. Next, a simplified melt pool model was used to calculate the melt pool dimensions for the selected sets of printing parameters. Both sets of data were then combined to predict the density of printed parts. This approach was additionally validated using the literature data on AlSi10Mg and 316L alloys, thus demonstrating that it can reliably be used to optimize the laser powder bed metal fusion process. Full article
(This article belongs to the Special Issue Anniversary Feature Papers)
Show Figures

Graphical abstract

Back to TopTop