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Abstract: Industry 4.0 requires phenomenon twins to functionalize the relevant systems (e.g.,
cyber-physical systems). A phenomenon twin means a computable virtual abstraction of a real
phenomenon. In order to systematize the construction process of a phenomenon twin, this study
proposes a system defined as the phenomenon twin construction system. It consists of three
components, namely the input, processing, and output components. Among these components,
the processing component is the most critical one that digitally models, simulates, and validates a given
phenomenon extracting information from the input component. What kind of modeling, simulation,
and validation approaches should be used while constructing the processing component for a given
phenomenon is a research question. This study answers this question using the case of surface
roughness—a complex phenomenon associated with all material removal processes. Accordingly,
this study shows that for modeling the surface roughness of a machined surface, the approach called
semantic modeling is more effective than the conventional approach called the Markov chain. It is
also found that to validate whether or not a simulated surface roughness resembles the expected
roughness, the outcomes of the possibility distribution-based computing and DNA-based computing
are more effective than the outcomes of a conventional computing wherein the arithmetic mean
height of surface roughness is calculated. Thus, apart from the conventional computing approaches,
the leading edge computational intelligence-based approaches can digitize manufacturing processes
more effectively.

Keywords: Industry 4.0; cyber-physical systems; digital twin; surface roughness; complex
phenomenon; semantic modeling; Monte Carlo simulation; DNA-based computing; Markov chain

1. Introduction

The manufacturing sector has faced four industrial revolutions (i.e., Industry 1.0, Industry 2.0,
Industry 3.0, and Industry 4.0). In Industry 1.0, the main theme was to utilize steam engine-based
devices. In Industry 2.0, the main theme was to enhance productivity by introducing mass production
assembly lines. In Industry 3.0, the main theme was to automate the manufacturing tasks by using
numerically controlled devices. Now, the manufacturing sector faces the challenges of Industry 4.0 [1–3].
It integrates Information and Communication Technologies (ICT) with manufacturing activities as
intensively as possible. The goal is to fulfill some high-level functional requirements such as monitoring,
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understanding, predicting, decision-making, and adapting [2,4–7]. To achieve the above-mentioned
requirements, Industry 4.0 requires some knowledge-centric embedded systems such as the Internet
of Things (IoT), the Industrial Internet of Things (IIoT), and Cyber-Physical Systems (CPS) [8–12].
Consider CPS. These systems are nothing but ever-growing knowledge-based systems that ensure a
seamless merger between the physical and cyber worlds [6,10,13,14]. The physical world refers to the
manufacturing enablers (e.g., machines, tools, sensors, physical networks among computing devices,
actuators, robots, computers, and the like). These are needed to perform the manufacturing activities
in the real world. These enablers are linked with each other by the Internet-based infrastructures
(e.g., IoT). On the other hand, the cyber world refers to the computational entities (e.g., data analytics,
knowledge-based systems, algorithms, decision-making systems, and the like) and cloud-based data
storage systems (e.g., historical data, information, big data, and the like). In order to materialize the
CPS, the IoT-based enablers, cloud-based data storage systems, and manufacturing knowledge-bases
interact with each other whenever needed; this scenario is shown in Figure 1. As seen in Figure 1,
the Industry 4.0-based CPS contains Digital Twins (DTs), among others. By definition, a DT means a
computable virtual abstraction of a segment of the real world; the aerospace industry originated this
idea [15].
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As far as Industry 4.0 is concerned, DTs digitize the objects, processes, and phenomena relevant
to manufacturing activities and enablers [16,17]. As such, in Industry 4.0, there are three types of
DT, namely object twin, process twin, and phenomenon twin. An object twin is a computable virtual
abstraction of the geometrical and topological structures of a product (e.g., a gear) or a facility (a
machine tool, an assembly line, and so forth). A process twin is a computable virtual abstraction of a
process or production plan (e.g., scheduling for machining a part at different workstations spread in
different factories, a bill of materials, and so forth). Finally, a phenomenon twin is a computable virtual
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abstraction of a manufacturing phenomenon (e.g., the phenomena related to material removal processes,
namely cutting force, tool wear, cutting temperature, workpiece deformation, surface roughness, chatter
vibration, and so forth). All three types of DT must populate the knowledge-based systems of CPS to
achieve the above-mentioned requirements of Industry 4.0. As a result, a system engineering concept
called the digital twin construction system evolves, as seen in Figure 1. Its function is to construct the
DTs for the intended purposes. At the same time, there must be another system, that is the digital
twin adaptation system. Its function is to integrate the DTs into the relevant manufacturing systems.
This means that the information of the manufacturing enablers (e.g., description of the manufacturing
activities, devices, and systems), the knowledge of manufacturing processes, the information received
from a manufacturing processes (e.g., sensor signals), and data from cloud storage (e.g., historical
data) [10,16–20] are connected to the digital twin construction and adaptation systems within the
framework of CPS, as schematically illustrated in Figure 1.

Though there are many studies regarding Industry 4.0 and its constituents (CPS, DT, and IoT),
the construction process of DT has not yet been elucidated as elaborately as is needed for systems
engineering. This is particularly true for the phenomenon twin. One of the reasons could be the
intrinsic complexity associated with the manufacturing phenomena, which is difficult to digitize using
the conventional analytical computational approaches. As an alternative, digitization of manufacturing
phenomenon can be carried out using computational intelligence-based approaches. This study takes
this alternative path. In particular, this study first proposes a Phenomenon Twin Construction System
(PTCS). This study then shows how to construct a phenomenon twin focusing on surface roughness
generated due to the material removal process. In this respect, this study applies different approaches
within the framework of the proposed PTCS. For the sake of better understanding, the rest of this
article is organized as follows: Section 2 presents a literature review on DTs and other relevant issues.
Section 3 presents the proposed architecture of the PTCS. Section 4 presents the framework of the
phenomenon twin construction process of surface roughness. Sections 5 and 6 present the efficacy
of the applied approaches in constructing. Finally, Section 7 provides the concluding remarks of
this study.

2. Literature Review

This section briefly describes some selected articles relevant to this article.
Luo et al. [21] developed a DT for a CNC machine tool. The DT integrates knowledge related to

the machine tool, information related to the machining process and sensor signals from the machining
environment. It uses a machine learning algorithm for condition monitoring and fault prediction.
Tong et al. [22] proposed a DT-driven Intelligent Machine Tool (IMT). The DT comprises a data
acquisition system, data processing system, and data analysis system; multi-sensor fusion technology,
MTConnect protocols, and HMIs (Human Machine Interfaces) functionalize these systems. These
systems use sensor signals from the machining environment and information related to the machine
tool and machining process for decision-making. Tao et al. [19] proposed a DT-driven product design,
manufacturing, and service approach. The approach integrates information related to the product,
design requirements, manufacturing process, historical data (in the form of big data), environmental
factors, market survey results, and customer feedback. It helps improve the design, optimize the
production and process plan, as well as intelligent service and maintenance. Shafiq et al. [23]
coined a concept called Virtual Engineering Object (VEO). The VEO comprises a standard knowledge
representation technique called Set of Experience Knowledge Structure (SOEKS) and a computational
intelligence-based approach called Decisional DNA (DDNA). It uses shape-related information of an
object and experiential knowledge (formal decisions made) for decision-making. In a similar context,
Shafiq et al. [24] and Shafiq et al. [25] coined two more concepts, namely Virtual Engineering Process
(VEP) and Virtual Engineering Factory (VEF) for decision-making in process planning and factory
optimization, respectively. Ahmed et al. [26] and Ahmed et al. [27] added that virtual abstractions of
object, process, and factory associated with SOEKS and DDNA help smart knowledge management,
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which functionalizes the requirements of Industry 4.0. Xu [28] proposed a concept called Machine Tool
4.0 (MT 4.0). MT 4.0 uses data-driven cyber-twins of physical machine tools to achieve self-awareness,
self-optimization, and self-maintenance. It requires seamless connectivity between the twins and
physical tools for the intended purpose. Kritzinger et al. [29] reviewed various aspects (definition,
construction, integration, key enabling technologies, and application) of DTs in manufacturing.
They described that DT construction relies on sensor signals, object or shape-related information,
web-based technologies, simulation technologies (e.g., discrete event simulation, continuous simulation,
deterministic simulation, and the like), and data formatting (e.g., RIDF, XML, AutomationML, and the
like). Botkina et al. [30] developed a DT for a cutting tool. The DT incorporates the information related to
the tool following the international standard (ISO 13399). It functionalizes information exchange among
IoT-based devices. Liu et al. [31] developed a DT-based process planning approach called the Digital
Twin-based Process Knowledge Model (DT-PKM). The DT-PKM incorporates information related to
process equipment, process, sensor signal, and process knowledge big data. It uses a knowledge
filter algorithm and an evaluation approach for decision-making in process planning. Delbrügger et
al. [32] introduced a concept called Experimental Digital Twin (EDT)-based multi-level simulation; this
optimizes the productivity and efficiency of production systems. The EDT-based multi-level simulation
entails three levels, namely process simulation level, factory simulation level, and human interaction
level. These levels use AutomationML (AML) for data exchange. Olivotti et al. [33] proposed DTs
of manufacturing services. The DTs use sensor signals and installed bases (detailed knowledge of
machines, components, and subcomponents associated with a manufacturing facility) for process
planning (maintaining high machine availability and reducing downtime). Leng et al. [34] proposed a
DT-driven Manufacturing Cyber-Physical System (MCPS). MCPS comprises decentralized DT models
and bi-level online intelligence; this facilitates proactive decision-making in controlling and optimizing
a manufacturing workshop. Guo et al. [35] proposed a concept called modular-based DT. The concept
considers the flexibility of DT a key element for factory design. Zhang et al. [36] addressed a concept
called Product Manufacturing Digital Twin (PMDT). The PMDT integrates information related to the
product, design requirements, manufacturing process, shop-floor elements (devices, machines, and
equipment), and virtual knowledge-bases. The authors also addressed PMDT as a key element for
materializing the CPS in a production shop floor. Tao et al. [37] introduced a Digital Twin Shop-floor
(DTS). The DTS incorporates information related to the shop-floor, sensor signals, and historical data
to monitor the shop-floor and optimizing the process plans. Scaglioni and Ferretti [38] introduced
object-oriented modeling to create a DT of a machine tool. The DT comprises an FEM-based description
of the structural flexibility of the components of the kinematic structure, the model of the cutting
process, the model of the transmission chain, the model of the control system, and the sensor signals.
Ullah [16] and Ghosh et al. [17] described that, apart from virtual abstractions of objects and processes,
the phenomenon twin must populate the knowledge-based systems of CPS for functionalizing Industry
4.0. In this respect, Ullah [16] introduced a methodology called semantic modeling. The methodology
incorporates modeling of the stochastic features associated with the phenomenon, the simulation of
the features to recreate the phenomenon, and validation (comparison of the simulated outcomes with
the expected one) using a possibility distribution. The author also discussed the integration of the twin
with other systems of Industry 4.0 via semantic web representation. Ullah [39] introduced a dynamical
system-based approach for modeling non-linear machining phenomena. The approach modifies
a segment of a dynamical system called the Q-sequence to model surface roughness. The author
also validated the modeled roughness using conventional roughness parameters such as arithmetic
mean height roughness (Ra) and peak to valley height roughness (Rz), as well as non-conventional
computational approaches such as entropy and the possibility distribution. Ghosh et al. [17] proposed a
Hidden Markov Model (HMM)-based approach for constructing the phenomenon twin. The approach
models and simulates the surface roughness (manifested in the form of time series) by using a Markov
chain and a discrete event Monte Carlo simulation, respectively. The authors also validated the
simulated outcomes using the possibility distribution.
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In summary, the information of the manufacturing enablers (e.g., description of the manufacturing
activities, devices, equipment, and systems), the knowledge of manufacturing processes, the information
received from the manufacturing environment (e.g., sensor signals), and data from cloud storage
(e.g., historical data) are used to construct different types of DTs. Although different DT construction
approaches (e.g., machine learning algorithm, data-driven approach, modular approach, DDNA- and
SOEKS-based VEO, VEP, and VEF, semantic modeling, and so forth) are found in the extant literature,
the architecture of a DT and its construction process have not yet been elucidated as elaborately as is
needed for systems engineering. This is true for the phenomenon twin in particular because most of
the machining phenomenon are complex and stochastic.

3. Phenomenon Twin Construction System

As described in the previous section, the architecture of a DT and its construction process have
not yet been elucidated as elaborately as is needed for systems engineering. This section fills this gap
by proposing a Phenomenon Twin Construction System (PTCS).

The proposed PTCS is schematically illustrated in Figure 2. It (PTCS) consists of three basic
components, namely the Input Component (IC), Processing Component (PC), and Output Component
(OC). The IC deals with the input information (e.g., sensor signals, analytical results, and so on) related
to a given manufacturing phenomenon (e.g., cutting force, surface roughness, and the like). The PC
processes the information obtained from the IC by its subcomponents and preserves the phenomenon
in digital form. For the other component, OC injects the outcomes of PC into the knowledge-based
systems of the CPS. A general description of the components of PTCS is as follows.
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First, consider the IC. Manufacturing phenomena (e.g., cutting force, surface roughness, chatter
vibration, and the like) are complex and exhibit stochastic features [16,17]. It is a cumbersome task to
model such phenomena analytically. In a real-life manufacturing environment, when a phenomenon is
studied—either by conducting an experiment or by performing an analysis—the results are recorded
using some time series datasets generated from various sensors (e.g., force sensor, pressure sensor,
acoustic emission sensor, thermal sensor, and the like). Hence, the most likely manifestation of a
manufacturing phenomenon is a time series dataset exhibiting stochastic features. Such a manifestation
can provide the underlying process dynamics and performance [16,40]. Therefore, how to obtain and
store the time series datasets of a given manufacturing phenomenon become the main concern of
the IC.

Next, consider the PC. It must recognize the outcomes of the IC. It consists of three subcomponents,
namely the Modeling Component (MC), Simulation Component (SC), and Validation Component
(VC). MC encapsulates the dynamics underlying the phenomenon by modeling the relevant time
series datasets. In this respect, different modeling approaches reported in the literature (e.g., Q
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sequence-based approach, Markov chain-based approach, and semantic modeling-based approach)
can be used. SC simulates the phenomenon based on the modeling approach used by MC. In this
respect, different approaches reported in the literature (e.g., discrete event Monte Carlo simulation
and deterministic simulation) can be used. Finally, VC confirms whether or not the simulated
phenomenon becomes the replica of the real one. In this respect, the computational approaches based
on the concepts of entropy and possibility distribution can be used [16,39,41]. Other approaches, e.g.,
DNA-based computing [42–44] and Decisional DNA (DDNA) [45–47], can also be used for the same
purpose. Now, validation from the perspective of Industry 4.0 has a special significance. It is vital
for pragmatic adaptation, that is the generative integration among the supportive, but independent
workspaces [2,4,10,16,42,48–50]. This characteristic makes Industry 4.0 different from its immediate
predecessor (Industry 3.0) [16].

Finally, consider the OC. It makes the DT compatible with CPS. As such, semantic web-based
representation of the DT becomes an issue for OC, since the semantic web supplies contents that are
used in CPS for access and reuse [16].

Nevertheless, depending on the nature of the phenomenon, what kind of modeling, simulation,
and validation approaches should be used in a phenomenon-specific PTCS is a research question.
This question is answered focusing on surface roughness—a complex phenomenon associated with all
manufacturing processes—as follows.

4. PTCS for Surface Roughness

This section presents a general framework to construct a phenomenon twin of surface roughness
of a turned surface, as schematically illustrated in Figure 3.
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As seen in Figure 3, the turning experiment takes place on a workpiece surface under the
given cutting conditions (e.g., depth of cut, feed rate, cutting velocity, cutting directions, and
the like). When the experiment is completed, the surface heights of the workpiece surface are
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measured by using noncontact (laser) surface metrology equipment. See the work described in [51]
for details. The measurement results’ time series datasets of surface heights are denoted as
SD = {z(o)ij ∈ R | o = 1, . . . ,O, i = 0,1, . . . ,N, j = 1, . . . ,J}. These time series datasets (collected from the
work described in [51]) are shown in Figure A1 in Appendix A. However, as seen in Figure 3, SD becomes
the main concern of IC of the PTCS. PC recognizes the outcomes of IC and, thereby, digitizes the surface
heights using its three subcomponents: MC, SC, and VC. In this respect, MC uses two modelling
approaches, namely Markov chain and semantic modeling, to encapsulate the dynamics underlying
SD (time series of surface heights). SC uses a discrete event Monte Carlo simulation approach to
recreate the surface heights. VC uses three approaches, namely arithmetic mean height roughness (Ra),
possibility distribution, and DNA-based computing, for the sake of validation. The goal is to find the
efficacy of these approaches in constructing the phenomenon twin.

As an example, let IC consider the first time series dataset of surface heights from SD denoted as
zij = 1, as seen in Figure 4; this time series is the real or expected one. The return map is also shown to
understand the variability associated with the time series.

The PC recognizes the outcomes of IC and, thereby, digitizes the surface heights using its three
subcomponents: MC, SC, and VC. In this respect, MC, SC, and VC use the above-mentioned approaches.
Based on the approach used by MC, the outcomes of SC and VC are affected. Hence, to understand
better, the performance of MC, SC, and VC in constructing the phenomenon twin is described in
two different sections, namely, “Modeling, Simulation, and Validation Components—Option 1” and
“Modeling, Simulation, and Validation Components—Option 2”, as follows.
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Figure 4. Outcomes of IC: (a) real surface heights; (b) return map of (a).

5. Modeling, Simulation, and Validation Components—Option 1

This section describes the performance of MC, SC, and VC in constructing the phenomenon
twin of surface roughness; MC uses the Markov chain-based modeling approach; SC uses a discrete
event Monte Carlo simulation approach; and VC uses the arithmetic mean height roughness (Ra),
possibility distribution, and DNA-based computing-driven approaches. This section also discusses the
results obtained.

When MC uses the Markov chain-based modeling approach for encapsulating the dynamics
underlying a given time series, the scenario as seen in Figure 5 (rearranged from the work described
in [17]) evolves. MC recognizes the time series of surface heights from IC and defines its return map by
using a set of user-defined discrete states, e.g., {Very Low (VL), Low (L), Moderate (M), High (H), Very
High (VH)}. This results in a Markov chain showing the probability of transition from a given state to
other possible states, e.g., the transitions to the states denoted as VL, L, M, H, and VH from VL exhibit
the following probabilities: P(VL|VL) = 0, P(L|VL) = 0.5, P(M|VL) = 0.25, P(H|VL) = 0.25, and P(VH|VL)
= 0. Thus, MC encapsulates the dynamics underlying the time series in terms of a Markov chain. SC
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simulates the surface heights by using a Monte Carlo simulation of discrete states associated with the
Markov chain. Finally, VC validates the simulated time series compared to the real one. Note that the
mathematical formulations and simulation algorithm corresponding to MC and SC, respectively, are
beyond the scope of this study. One may refer to the work described in [17] for details.
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Figure 5. Outlining phenomenon twin construction of surface roughness using the Markov chain-based
modeling approach [17].

Nevertheless, using the above-mentioned contemplation, MC encapsulates the dynamics
underlying the real time series of surface heights, that is zij=1 (can also be seen from Figure 4)
in terms of a Markov chain, as seen in Figure 6. SC simulates the surface heights by using a Monte
Carlo simulation of discrete states associated with the Markov chain. In this respect, Figure 7 shows the
simulated time series of surface heights denoted as zsij=1 and its return map. As seen in Figures 4 and 7,
zsij = 1 is more stochastic compared to zij=1. In particular, the returns from one point to another are
non-identical. This means that zsij=1 is not similar to zij=1. This also means that the Markov chain-based
modeling approach is not effective for modeling surface roughness.
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Figure 7. Outcomes of discrete event Monte Carlo simulation-based SC associated with Markov
chain-based MC: (a) simulated surface heights; (b) return map of (a).

The dissimilarity in the expected and simulated roughness profiles must be detected by the
validation approaches in VC. In this respect, the validation by Ra is not effective. The reason is
as follows. The values of Ra for zij=1 (expected roughness) and zsij=1 (simulated roughness) are
1.979261025 and 2.014569035, respectively. This means that the values of Ra of two dissimilar roughness
profiles (expected and simulated) resemble each other, which should not be the case. On the other hand,
the possibility distributions of the expected and simulated surface roughness are not the same, as seen
in Figure 8a. This means that the possibility distribution-driven validation approach is comparatively
effective. A similar result is obtained for the other validation approach, that is DNA-based computing.
The frequencies of the amino acids (generated by applying DNA-based computing) of the expected
and simulated roughness profiles exhibit dissimilar patterns, as seen in Figure 8b.
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Figure 8. Outcomes of VC corresponding to Markov chain-based MC and discrete event Monte Carlo
simulation-based SC: (a) possibility distribution; (b) DNA-based computing.

6. Modeling, Simulation, and Validation Components—Option 2

This section describes the performance of MC, SC, and VC in constructing the phenomenon twin
of surface roughness; MC uses the semantic modeling approach; SC uses a Monte Carlo simulation
approach; and VC uses the arithmetic mean height roughness (Ra), possibility distribution, and
DNA-based computing-driven approaches. This section also discusses the results obtained.
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When MC uses the semantic modeling approach for encapsulating the dynamics underlying a
given time series, the scenario as seen in Figure 9 (rearranged from the work described in [16]) evolves.
MC extracts some stochastic features, namely trend, noise, and burst, exhibited by the time series.
Here, trend refers to a straight line with a positive or negative slope associated with the time series.
It is worth mentioning that trend may result because of alignment error between the workpiece and
cutting tool. Noise refers to a small-magnitude irregularity associated with the time series. Burst refers
to a large short-period deviation of time series. MC models these stochastic features by using a
set of mathematical formulations. SC simulates the features by using a Monte Carlo simulation
approach. This results in the simulated time series of surface heights. VC validates the simulated time
series compared to the real one. Note that the mathematical formulations and simulation algorithm
corresponding to MC and SC, respectively, are beyond the scope of this study. One may refer to the
work described in [16] for details.
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Figure 9. Outlining phenomenon twin construction of surface roughness using the semantic modeling
approach [16].

Nevertheless, using the above-mentioned contemplation, MC extracts the stochastic features
underlying the real time series of surface heights, that is zij=1 (can also be seen from Figure 4), as
seen in Figure 10. The stochastic features contain four trends associated with noise and sudden burst.
MC models these features using certain mathematical formulations. SC simulates the surface heights
by using a Monte Carlo simulation associated with the models. In this respect, Figure 11 shows the
simulated time series of surface heights denoted as zsfij=1 and its return map. As seen in Figures 4
and 11, zsfij=1 resembles zij=1. In particular, the returns from one point to another are identical. This
means that zsfij=1 is similar to zij=1. This also means that the semantic modeling approach is effective
for modeling surface roughness.
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Figure 10. Outcome of the semantic modeling-based MC.
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Figure 11. Outcomes of the Monte Carlo simulation-based SC associated with the semantic
modeling-based MC: (a) simulated surface heights; (b) return map of (a).

The similarity in the expected and simulated roughness profiles must be detected by the validation
approaches in VC. In this respect, the validation by Ra is effective. The reason is as follows. The values
of Ra for zij=1 (expected roughness) and zsfij=1 (simulated roughness) are 1.979261025 and 2.053738039,
respectively. This means that the values of Ra of two similar roughness profiles (expected and simulated)
resemble each other. Similar results are obtained for the other validation approaches (possibility
distribution and DNA-based computing). The possibility distributions of the expected and simulated
surface roughness are the same, as seen in Figure 12a. In the case of DNA-based computing, the
frequencies of the amino acids (generated by applying DNA-based computing) of the expected and
simulated roughness profiles exhibit similar patterns, as seen in Figure 12b. This means the possibility
distribution and DNA-based computing-driven validation approaches are effective. However, the
above-mentioned approaches (semantic modeling, possibility distribution, and DNA-based computing)
have also been applied to the rest of the real time series datasets of surface heights (see Figure A1b–d
in Appendix A), for understanding their (the approaches) efficacy to a vast extent. In this respect,
Figures A2–A4 (in Appendices B–D) show the results corresponding to Figure A1b–d, respectively.



J. Manuf. Mater. Process. 2020, 4, 11 12 of 19

J. Manuf. Mater. Process. 2020, 4, 11 12 of 19 

 

to a vast extent. In this respect, Figures A2–A4 (in Appendices B–D) show the results corresponding 
to Figure A1b–d, respectively. 

  

(a) (b) 

Figure 12. Outcomes of VC corresponding to the semantic modeling-based MC and Monte Carlo 
simulation-based SC: (a) possibility distribution; (b) DNA-based computing. 

7. Concluding Remarks 

In order to achieve the functional requirements of Industry 4.0, embedded systems such as 
cyber-physical systems are needed. The systems consist of self-growing knowledge-bases that are the 
outcomes of learning activities within or outside of a production line. The chunks of knowledge 
associated with the knowledge-bases of cyber-physical systems reside in the digital twins 
(computable virtual abstractions of real objects, processes, and phenomena). There are three types of 
digital twins, namely, object twin, process twin, and phenomenon twin. Among these twins, the 
phenomenon twin is the most difficult to construct and put in practice. The reason is that the 
manufacturing phenomena are highly nonlinear and difficult to study by using conventional 
analytical approaches. 

There is no systematic approach by which one can construct a phenomenon twin. In order to fill 
this gap, this study presented a system called the phenomenon twin construction system. This system 
consists of three components, namely the input component, processing component, and output 
component. Among these components, the processing component was the critical one that should 
perform the functions of modeling, simulation, and validation. Therefore, the processing component 
had three main subcomponents, namely modeling component, simulation component, and 
validation component. The modeling component modeled the underlying dynamics of a given 
phenomenon (most likely) from its sensor signals. The simulation component used a discrete event-
based Monte Carlo simulation approach to recreate the phenomenon whenever needed. The 
validation component validated the simulated phenomenon compared to the expected one. 

What kind of modeling, simulation, and validation approaches should be used while 
constructing the subcomponents of the processing component, respectively, for a given phenomenon 
is a research question. This study answered this question using the case of surface roughness—a 
complex phenomenon associated with all material removal processes. 

This study showed that for modeling the surface roughness of a machined surface, the approach 
called semantic modeling was more effective than the conventional approach called the Markov 
chain. It also showed that to validate whether or not a simulated surface roughness resembled the 
expected roughness, the outcomes of the possibility distribution-based computing and DNA-based 
computing were more effective than the outcomes of conventional computing wherein the arithmetic 
mean height of surface roughness was calculated. 

Surface heights [µm]

de
gr

ee
 o

f p
os

sib
ili

ty

-20 -10 0 10 20
0

0.2

0.4

0.6

0.8

1
Real
Simulated

Amino Acid

Fr
eq

ue
nc

y

0

40

80

120

160

200

ACDEFGH I KLMNPQRS TVWXY

Real
Simulated

Figure 12. Outcomes of VC corresponding to the semantic modeling-based MC and Monte Carlo
simulation-based SC: (a) possibility distribution; (b) DNA-based computing.

7. Concluding Remarks

In order to achieve the functional requirements of Industry 4.0, embedded systems such as
cyber-physical systems are needed. The systems consist of self-growing knowledge-bases that are
the outcomes of learning activities within or outside of a production line. The chunks of knowledge
associated with the knowledge-bases of cyber-physical systems reside in the digital twins (computable
virtual abstractions of real objects, processes, and phenomena). There are three types of digital twins,
namely, object twin, process twin, and phenomenon twin. Among these twins, the phenomenon twin
is the most difficult to construct and put in practice. The reason is that the manufacturing phenomena
are highly nonlinear and difficult to study by using conventional analytical approaches.

There is no systematic approach by which one can construct a phenomenon twin. In order to
fill this gap, this study presented a system called the phenomenon twin construction system. This
system consists of three components, namely the input component, processing component, and output
component. Among these components, the processing component was the critical one that should
perform the functions of modeling, simulation, and validation. Therefore, the processing component
had three main subcomponents, namely modeling component, simulation component, and validation
component. The modeling component modeled the underlying dynamics of a given phenomenon
(most likely) from its sensor signals. The simulation component used a discrete event-based Monte
Carlo simulation approach to recreate the phenomenon whenever needed. The validation component
validated the simulated phenomenon compared to the expected one.

What kind of modeling, simulation, and validation approaches should be used while constructing
the subcomponents of the processing component, respectively, for a given phenomenon is a research
question. This study answered this question using the case of surface roughness—a complex
phenomenon associated with all material removal processes.

This study showed that for modeling the surface roughness of a machined surface, the approach
called semantic modeling was more effective than the conventional approach called the Markov chain.
It also showed that to validate whether or not a simulated surface roughness resembled the expected
roughness, the outcomes of the possibility distribution-based computing and DNA-based computing
were more effective than the outcomes of conventional computing wherein the arithmetic mean height
of surface roughness was calculated.

As demonstrated in this study, the leading edge computational intelligence-based approaches
could achieve a high degree of digitization of manufacturing processes for the sake of Industry 4.0.
As a result, computational intelligence-based approaches will be applied more widely in the years
to come.
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Figure A1. Measured surface heights [51]: (a) j = 1; (b) j = 2; (c) j = 3; (d) j = 4.
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Appendix B. Results Corresponding to Figure A1b
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Figure A2. Outcomes of SC and VC corresponding to the semantic modeling-based MC for zij=2:
(a) real surface heights; (b) return map of (a); (c) simulated surface heights; (d) return map of (c);
(e) possibility distribution; (f) DNA-based computing.
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Appendix C. Results Corresponding to Figure A1c
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Figure A3. Outcomes of SC and VC corresponding to the semantic modeling-based MC for zij=3:
(a) real surface heights; (b) return map of (a); (c) simulated surface heights; (d) return map of (c);
(e) possibility distribution; (f) DNA-based computing.
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Appendix D. Results corresponding to Figure A1d
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Figure A4. Outcomes of SC and VC corresponding to the semantic modeling-based MC for zij=4:
(a) real surface heights; (b) return map of (a); (c) simulated surface heights; (d) return map of (c);
(e) possibility distribution; (f) DNA-based computing.
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