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Abstract: The implementation of Industry 4.0 and smart factory concepts changes the ways of
manufacturing and production and requires the combination and interaction of different technologies
and systems. The need for rapid implementation is steadily increasing as customers demand
individualized products which are only possible if the production unit is smart and flexible. However,
an existing factory cannot be transformed easily into a smart factory, especially not during operational
mode. Therefore, designers and engineers require solutions which help to simulate the aspired
change beforehand, thus running realistic pre-tests without disturbing operations and production.
New product lines may also be tested beforehand. Data and the deduced knowledge are key factors
of the said transformation. One idea for simulation is applying artificial intelligence, in this case the
method of multi-agent-systems (MAS), to simulate the inter-dependencies of different production
units based on individually configured orders. Once the smart factory is running additional machine
learning methods for feedback data of the different machine units may be applied for generating
knowledge for improvement of processes and decision making. This paper describes the necessary
interaction of manufacturing and knowledge-based solutions before showing an MAS use case
implementation of a production line using Anylogic.

Keywords: multi-agent-systems; smart factory; cyber–physical production systems; knowledge
management

1. Introduction

Industry 4.0, defined as the fourth industrial revolution, leads to changes in the way companies
produce their goods and provide customer services. A motor for this change is digitization and
change of customer expectations. Key characteristics of a smart production environment are
flexibility, intelligent maintenance, IoT for building cyber–physical systems (CPS), interconnected
production environments, self-organized adaptive logistics or customer individual engineering [1].
Today customers oftentimes demand extensive options to configure or customize their orders [2],
to create individual products no one else in their vicinity owns or to fulfill specific requirements [3].
Competition on the market changes from competition between best products towards competition
between best business models leading to hybrid offerings consisting of products and combined (smart)
services [1].

The trend of individualization leads to changes in the way the singular manufacturing steps,
production processes and overall organization of a factory works as changes must be implemented
in the ordering process, supply chain and the production shop floor leading to a more complex and
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interconnected production environment [4]. For detecting the consequences, but also possibilities and
innovative potential of Industry 4.0, Müller, Buliga and Voigt (2020) conducted a survey comparing
SMEs and large companies targeting their “exploratory and exploitative innovation strategies” due to
Industry 4.0 [5]. They emphasize the necessity of adapting technology as well as business models [5].
Essential are the changes of processes towards digital interconnected processes to realize a network
between the involved machines [1]. A key factor for success of a smart factory are decentrality and
addressing of singular objects inside the smart environment for autonomous processes and decision
making [4].

One aspect of modern manufacturing processes in the sense of CPPS are the generation and
consideration of data. On a low level this data allows monitoring of manufacturing steps or involved
machines, while on a higher level it might be used for predicting future maintenance activities,
optimizing production planning or decision making. At this stage computer science algorithms are
getting involved, ranging from simple statistics towards machine learning or even more complex
artificial intelligence (AI) algorithms. Lang et al., e.g., published a recent practical example for a
knowledge-based approach for improving additive manufacturing [6], while Mirfar, Kadivar and
Azarhoushang (2020) analyzed acoustic sounds of emission sensors with the help of machine learning
in the form of neural networks for improving grinding processes [7].

Another concrete and widely discussed AI method applicable in industry 4.0 are
multi-agent-systems (MAS). The idea of using MAS for industrial application purposes has not
emerged recently but has already been in focus previous of the emergence of the concept of smart
factories. One example for such an approach would be the one of Lou, Ong and Nee, who discussed
in 2009 an use case of applying “agent-based distributed scheduling for virtual job shops” leading
towards more flexibility of production, planning and customization [8]. Applying MAS in industry
4.0 offers the possibility to transfer the reality or future design of a smart factory into a simulation model
where different manufacturing steps, production machines or systems may be represented in form of
depending agents which influence each other. With the help of key performance indicators, enriching
the simulation, it is possible to measure, e.g., time, material or safety parameters. This approach may
be combined with the digital twin concept, where each physical component has got a counterpart in
form of a cyber-model. Gorodetsky et al. (2019) sketch an exemplary lifecycle of an autonomous CPS
while applying multi-agent systems consisting of 10 different steps, such as planning and scheduling,
forecasting, or learning from experience [9]. Overall, “modeling enables the analysis of materials,
production line and product performance... with the aim of improving and optimizing the overall
operations and reducing setup costs, errors or machine downtimes” [2]. Gunal even calls simulation
the “enabler of Industry 4.0” [3].

The given paper analyzes how the application of MAS, for the planning of a production line,
may be used and how the generated data may be transferred into knowledge for smart process
improvement. Therefore, a use case of a picture frame production line has been designed. In this
scenario customers may configure the type of material, size of the frame and color. The simulation
applies agents to represent the different manufacturing steps and their dependencies. It has been
executed and evaluated with the software tool AnyLogic [10], defining different KPIs as well as
comparing a normal to a manipulated production process.

The structure of the paper covers a summary of the transformation towards a smart factory
from a data and knowledge management perspective, before the concept and applicability of MAS
as a knowledge-based method for simulation purposes and data analytics in a smart factory is being
discussed. In Section 3 the basic concept of the use case will be introduced, before the implementation
results will be discussed. At the end there will be a conclusion and outlook for future works.

2. Materials And Methods

This section builds the theoretic background of approaches for a knowledge-driven manufacturing
in modern cyber–physical production systems and emphasizes the importance of data for this change
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in manufacturing from a computer science point of view. In this context, the human–machine as well
as machine–machine interaction will be discussed as well as the applicability of multi-agent-systems
(MAS) for simulation and adaptation in future smart factories. MAS are an artificial intelligence
method providing potentials for planning and optimizing manufacturing processes, therefore offering a
possibility of smart manufacturing. The method will be applied later on for the use case implementation.

2.1. Knowledge-Driven Manufacturing

2.1.1. Merging of Physical and Digital Manufacturing

Industry 4.0 motivated a transformation process of “regular” factories into smart factories
based on digitization from singular production units, over whole shop floors towards globally
interconnected production lines. Smart factories, factories of future, or in general smart production
environments apply building blocks such as sensor-based modules and systems, ubiquitous computing,
IPv6, Internet of Things (IoT) and cloud computing to establish a cyber–physical (production)
system (CP(P)S) infrastructure [11]. CPPS, or single CPS represent a merging of physical
production equipment and digital/cyber systems, which leads to changes of production
processes, human–machine-communication and emerging machine-to-machine-communication [11].
Gerhard (2017) pronounces the two central aspects of CPPS, one where CPS are integrated into
products as well as being building blocks for restructuring the production environment itself.
The modern product lifecycle management has to adapt to this development [12], as well as the
trend of integrating or involving AI applications or machines, working with the help of artificial
intelligence algorithms [13].

Karnouskos et al. (2019) identified the three characteristics of autonomy, integrability and
convertibility as the main CPPS pillars [14]. Due to the interconnection, automation and integration
of machines and other objects and devices towards CPS, data is generated continuously up to the
amount of big data, which in consequence needs to be processed and analyzed to generate engineering
value [15]. Core elements for the establishment of CPS are IoT devices, which generate continuous
data streams, applicable for different forms of data analysis [16]. A concept called edge computing
provides the ability to execute data storage and analysis near or embedded into singular smart objects
(e.g., machines on the shop floor), while fog computing allows to gather data from different objects
and transfer them, e.g., into a cloud storage for further analysis or archiving [13]. Identification and
communication technologies such as RFID, GPS, WLAN or further industrial communication protocols
are used to create the necessary inter-connectivity inside the smart factory and to identify the singular
objects explicitly.

If an object such as, e.g., a material transport carrier may not be identified explicitly it is not able
to receive information for its next destination which in consequence prevents automation. To realize
a continuous identified stream of feedback data a “network of interconnected physical and virtual
nodes, where each node relates to an arbitrary number of sensors and actuators or external systems”
needs to be established [17]. This leads to an inherent characteristic of “interconnected twin cybernetics
digital system[s]” [18] or “digital twin-based CPPS” [9], whose gathered and analyzed data allows
prediction and supports decision making [18]. In general, the digital twin concept combines “a physical
entity, a virtual counterpart, and the data connection in between” [19]. This way, the digital twin
ties the physical and virtual world based on the physical product, its virtual counterpart and the
data exchange in between. This data may be used for analysis, simulation or real-time updates [20].
According to the IIC “a digital twin is a formal digital representation of some asset, process or system
that captures attributes and behaviors of that entity suitable for communication, storage, interpretation
or processing within a certain context” [21]. A digital twin may cover physical-based, analytical or
visual models and data as well as time-series, transactions or general computations and their respective
associated data [21]. Campos-Ferreira et al. (2019) declare that the “Digital Twin is one of the most
promising technologies for system simulation and monitoring” [22]. Recent approaches even see a
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direct possibility for applying blockchain technologies for implementing a digital twin concept and to
secure the data generated from the model [23]. In consequence, it might be resumed, that data and
virtual models are the core components of the digital twin concept, ergo in combination with data
analysis methods some core components of smart manufacturing [24].

This is especially beneficial for the product lifecycle management as product feedback data may be
generated implicitly due to analyzing, e.g., generated IoT sensor data in the virtual space. The digital
twin, as the virtual representation of the physical model, and the analyzed data allow real-time
reflection, interaction and convergence as well as self-evolution due to updating data and continuous
improvement [20]. This way a two-way feedback flow in the form of a physical-virtual-connection and
virtual-physical-connection may be established [19].

2.1.2. From Data to Knowledge

In general, smart factories and the implementation of CPPS as well as usage of IoT devices lead
to the generation of big data as discussed before. The generated data offers an organization different
possibilities: (a) Ignore the data, which would be inefficient and a lost opportunity to generate feedback
knowledge from production processes, (b) implement ad-hoc analysis and visualization of data streams
based on real-time-processing, to, e.g., display dashboards about current processes or difficulties inside
the smart factory, (c) implement and visualize long-term analysis and reports based on in-depth
analysis. In case of (c) this would offer benefits for production planning and optimization for the next
production sequence; (b) is required to analyze the current state but to also automate the production
line and adjust it based on limited or blocked resources or other current production problems.

From a knowledge management point of view, there are some central aspects or research questions
to consider. For example, it has to be analyzed which available models and methods may be used or
be adapted for this new working environment, named, e.g., “digitized knowledge society” leading to
knowledge 4.0 and work 4.0 [25]. The organizational change and the required lifelong learning need to
be considered in all knowledge management activities of the smart factory [4]. Knowledge engineers
need to be involved to support the transformation process from a traditional factory into a smart
factory and to be the bridging element between different involved work groups and disciplines and
their respective knowledge of the production process. In consequence, holistic views of the different
processes may be modeled, and their inter-dependencies and variations will create a basis for the
aspired digital changes and transformation towards a CPPS.

Next to the promising digital twin concept, discussed in the previous subsection, another big
area of research (e.g., [26]) is how to integrate knowledge-based methods such as machine learning
algorithms, data mining or other methods leading to artificial intelligence and how they might be
applied for (a) planning a smart factory or production process, e.g., in form of a simulation of the
future realization and (b) for analyzing the data created inside the CPPS of machines and humans,
leading to improvement and decision support. The “smartness” or “intelligence” of a smart factory
may only be realized if the different production units and involved components constantly deliver data,
which needs to be set in context, to be analyzed and to create a knowledge feedback loop. This feedback
knowledge will again help to improve the representation of, e.g., the digital twin, the production
process, decision making, re-configuration of the CPPS and monitoring of the production process.

The challenge of the different aspects mentioned above is how to start a transformation of a
factory into a smart factory if the production process is not allowed to be stopped in between for
a longer period, and there is no plan to build up an entirely new production plant from scratch.
Furthermore, existing shop floors will soon consist of physical and cyber objects that need to interact
with each other to create the aspired CPPS. Artificial intelligence offers ways to simulate processes
based on changing or randomly generated parameters, thus offering a viable alternative to pre-design,
simulate and test different variants of a future solution. Lee et al. (2018) ventured a broader look into
the “Industrial AI eco-system” of the future to meet the needs of self-awareness, self-comparability,
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self-prediction, self-optimization and resilience. In this context they emphasize that the Industrial AI
needs to follow a systematic learning approach to yield a real benefit for Industry 4.0 [27].

For the realization of data analysis “each node represents the source of information collected
from the given environment”, which in consequence leads to a decision process where further steps
for analyzing, filtering or constraining of data and information throughout the network need to be
taken [17]. The things or sensors gather observation data in the real-production world and establish a
web of data, which needs to be transformed into individual information and subsequently knowledge
for proposing solutions or decisions [16]. Fei et al. (2019) proclaim, “data stream analytics [as] one
of the core components of CPS” and evaluate different machine learning (ML) algorithms regarding
their applicability for analyzing CPS data streams [18]. Those algorithms originated from computer
science and artificial intelligence indicate the merging of cyber and engineering/manufacturing world.
In this context, Burggräf, Wagner and Weißer (2020) conducted a literature review in which they
approached the future of production environments from a problem-solving perspective to analyze
which knowledge-based approaches might be applicable or promising. This indicates another trend of a
merging of the cyber and physical world as well as the worlds of computer science and manufacturing.
The authors focus their literature review on publications discussing problem solving in physical
product development with the help of either machine learning, artificial intelligence, expert systems or
case-based reasoning. As a result they create a superposition about the different knowledge-based
methods and their interrelation [26].

Finally, the information technology systems (e.g., ERP, MES, PLM, . . . ) supporting smart factory
processes require more flexibility [2,4] as well as more data, which needs to be connected between
different systems, to be analyzed, documented and visualized for the employees fulfilling different
roles inside the organization. The interconnection between the different systems to follow the
chain of an individual order or product lifecycle is especially important as the specifics of the
product lead to specific configurations of the shop floor. If subsequent orders are differentiating
fundamentally, the production line needs to be “smart” enough to allow easy reconfiguration as
otherwise the manual tasks and time to execute this reconfiguration will lead to additional production
time and costs. An alternative, already as part of lean production (e.g., [11]) established method,
is to optimize the order of the production queue in such a way that orders with similar configuration
settings are processed after each other, essentially covering an optimization problem to save time for
reconfiguration. Overall, in Industry 4.0 there will be changes transforming the former automation
pyramid towards a service-oriented network which has to be integrated horizontally and vertically
into an organization, for setting up a smart production environment while realizing the necessary
communication channels [4].

In general, the established infrastructure and change of processes is targeted towards smart
manufacturing (e.g., [24]), where data and knowledge are mainly used for planning of actions as
well as self-optimization [28]. This leads to advantages such as “real-time monitoring, simulation
and prediction of manufacturing operations”, which are evaluated as “vital to improve the
production efficiency and flexibility” [9]. Those decisions may be made by human or machine,
in a human–machine-collaboration or due to machine–machine-communication. Job scheduling
and dynamic processing factors need to be considered in this context as well [29]. In addition,
an improvement of tackling the problem of flow shop scheduling might be approached with the help of
an evolutionary recommendation approach consisting of “collaborative filtering”, a “ratings converter
and some “recommendation assessment metrics [30].

Overall, data leading to knowledge are the core driving factors inside a smart factory as otherwise
an automation, re-scheduling, monitoring, optimization or learning of production processes would
not be possible. The given paper therefore, focuses this knowledge-based perspective instead
of the manufacturing one, with the purpose of simulating manufacturing processes in a fictional
production plant.
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2.2. Human–Machine and Machine–Machine Interaction

With the changing technology and digitization of factories the interaction of employees with
their machines and, in consequence, the way of executing their work changes. Gorecky et al. (2017)
visualize the adapted production strategy and role of human workers in industry 4.0 by showcasing
the process steps of data gathering in CPPS/CPS, automated aggregation towards information and
knowledge, and the following human interpretation and intervention (if necessary), which indicates the
supervising role of the worker in a smart production environment [31]. To execute this role, the human
worker is now interconnected with CPS with the help of multi-modal human–machine interfaces [4].
This interaction may be divided into two directions of human–machine-cooperation (depending on the
reference also called human–machine-interaction) and human–machine-collaboration. Whereas the
first one focuses on the execution of assigned tasks in cooperation or interaction between the employee
and a (smart) machine, the second one targets the exchange of information which previously happened
mostly between the involved humans [32,33].

While the IT world has established the research area of human-computer-interaction,
the interaction of human and smart device (e.g., IoT-device), smart machine or even autonomous
robots bring on a new complexity as the device, machine or robot now possesses somehow cognitive
abilities and a certain intelligence. According to Seeber et al. (2019) an AI “would always base its
decision-making on optimizing its objectives, rather than incorporating social or emotional factors” [34],
that’s why a human working with a smart or even AI machine needs to consider and predict its likely
behavior. The aspects of cooperation and collaboration require a different machine handling and
a more comprehensive overview of the machine environment and the related or even automated
processes. The responsibility for supervising, managing and controlling different, perhaps not even
local machines, will increase and will require different skills from the workers as well as different
digital tools and dashboards [31]. The way an employee interacts with other employees and machines
is expected to differ greatly between a “traditional” and a smart factory. In the smart factory the
machine or robot may be a collaborative peer to the employee or replace certain standard tasks while
the employee takes on the more controlling or supervising role [25]. Security aspects such as (1) a
security stop of a robot or machine, in case the human employee is inside a certain working area,
(2) manual mode of machine control, (3) speed and distance control or (4) performance and power
limitations must be considered, especially for the execution of collaborative tasks [35]. For both, human
and machine it needs to be clear who is responsible of executing a certain task in an automated process
loop of a smart factory and what happens when either of them takes an unexpected action leading to a
previously undefined situation for the machine or dangers for the human. How is the machine able
to react and how may it learn for future similar situations? Respectively, how does the human learn
and anticipate the possible actions of the machine? Working in a smart environment with expected
collaboration and cooperation with a smart machine requires not only additional knowledge but
also extended context-aware competences detecting dependencies and relations to the organizational
context, processes or interaction [33].

Kaivo-oja et al. (2020) analyzed the interaction between man and machine in industry 4.0 and the
benefits of creating digital twin representations of both to support future knowledge management.
While beforehand oftentimes only the machine had a digital equivalent, the authors also envision the
digital twin of the worker to create a holistic view of the process. They propose a “Personal Digital
Twin”, which may contain regular updates of the workers “best experience”. The target process
of building synergies is the “physical-to-digital-to-physical” loop, indicating the necessary steps of
gathering data from the physical process, its digital processing and improving of the involved digital
twins as well as analysis based on, e.g., AI, before the results allow real-world decision making [36].

David, Lobov and Lanz (2018) on the other hand discuss the applicability of the digital twin
model in the context of education, learning and competence building to prepare workers for the future
of flexible manufacturing systems [37].
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For the given work, both the human–machine-cooperation and human–machine-collaboration are
both interesting aspects, as the application of agent-based-systems allows different benefits, the central
one being the modeling of different machines and human worker roles in form of different agents and
their behavior, leading to pre-simulations of the interaction between machine and human in the given
factory context. Later on, results and observations from the real-environment may be used for updates,
refinement and learning.

2.3. Application of Multi-Agent-Systems for Smart Factory Simulation and Adaptation

Multi-Agent-Systems (MAS) are a method from the field of artificial intelligence (AI) used for
simulating real-world-problems with the help of differently acting agents in a specific environment.
Agents in general are viewed as a reliable method to implement service-oriented architectures and the
necessary exchange of information [4]. The efficiency and ability for decision-making of a MAS depends
significantly on data or “data-driven technologies” [29]. A well-known definition of Woolridge [38]
declares an agent as “a computer system that is situated in some environment, and that is capable
of autonomous action in this environment in order to meet its delegated objectives”. It is not a
new method or concept, but its inherent characteristics of agility and adaptability [29], as well as
reactiveness, proactiveness and social abilities [38], allow MAS to be applied in the context of smart
environments, either for scheduling or simulation purposes [29]. This holds especially true as MAS
support individual or autonomous information gathering and decision making [29], as well as flexibility
and dynamic reconfiguration [39]. Therefore, Beierle and Kern-Isberner (2014) declare it as one of the
paradigms which essentially contributed towards the further development of AI in recent years [40],
while Botti et al. (2019) see MAS as “most suitable candidates for the design and development of
distributed and intelligent applications in complex and dynamic environments” [41]. Soic et al. (2020)
stress the ability of MAS for “modeling ... high-level cognitive processes [while] making use of all the
available information” [17].

The applicability of MAS in smart factories or more specific CPPS has been discussed for some
time in the manufacturing community, e.g., [13,28,39,42]. In the following, a few examples and different
approaches of recent years shall be discussed to indicate the development trends and application
possibilities of MAS in CPPS:

The main reason why MAS is more frequently used today, is that for simulating purposes
computing power is being required, which has not been available at the time the method has
been published. In addition, there are more complex and human-centered problems which
require simulation activities [41]. In general, a MAS consists of several “agents” which represent
real-world-entities. Those agents are able to observe their environment, meaning they are perceptive to
outside signals while having their own agenda of acting towards a desired goal. Therefore, the agent
acts in a somehow predefined but still independent way. The agent receives values and beliefs
for defining his behavior, similar to the behavior of humans with different upbringing, goals and
intents. This way, the agent has some beliefs, desires and intentions he wants to fulfill inside the
application domain or environment. Actions are triggered based on different input criteria such as
time, activation of certain states or execution of processes. Logic or rules enhance the execution of
reasoning tasks [38,40,43,44].

To provide a more likeliness towards human interaction, “aspects such as reactivity, proactivity,
and sociability” need to be considered [41]. Woolridge (2009) indicated them already as key
characteristics of MAS [38]. According to Dorri, Kanhere, and Jurdak (2018) there are two types of
agents, one communicative type of agent and one situation-based agent [43]: The communicative type
actively interacts with other agents inside the environment, thus he is able to send messages towards
them. The agent reacting on a certain situation scans his environment and executes certain actions
based on his perception. Overall the agents might work together or against each other. The detail level
of the environment may be between individual agents, a group of agents or different groups or types
of agents. This way, different machines, CPS configurations or social interaction between humans or
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human and machine might be simulated. For the detailed use case in the next section the MAS will be
used to simulate the behavior of the different production steps and units inside the production plant.
At this stage of the implementation the human worker is not yet part of the MAS scenario, but needs
to be considered in the future.

Next to the agents, the environment where they act needs to be defined and specified. Beierle and
Kern-Isberner (2014) name different criterion for defining a MAS environment such as if the
environment is accessible, deterministic, static, dynamic, if it covers discrete or continuous states
or if it relates to certain situations or episodes [40]. As the smart factory aims for dynamic
reactions and processes, this criterion would be a key factor for the MAS implementation of a CPPS.
MAS-Tools, such as Anylogic [10], allow combined modeling, implementing and simulating of the
MAS environment as well as the agent behavior.

3. Use Case

In this section the chosen use case scenario will be introduced as well as the necessary
steps for designing the MAS simulation will be discussed from a knowledge management and
process perspective.

3.1. Scenario Description

The use case scenario for the simulation of the smart factory production process covers the
configuration, ordering, production and logistics of individualized picture frames of different sizes
and materials. The customer may therefore configure the size, type of material and type of color of
each frame individually. The different types of material, such as glass, wood, metal, PVC, require the
application of different production processes and tools. The logistic processes of materials or parts as
well as finished goods have to be considered as well. The shop floor consists of machines for cutting
material, grinding with specific tools based on the material, painting (if desired and possible) as well as
assembly. Not all of the steps can or have to be executed for each material, e.g., the material glass does
not require the painting job. The painting itself may again happen individually based on the chosen
colors and depending on the type of material, as there are different types of color for painting different
frame materials. Figure 1 summarizes the smart factory areas consisting of logistics, storage and the
central shop floor. The generated data is indicated in form of an internal and outside feedback loop
applying data analytics.

For the scenario RFID-chips are used as information carriers for the different materials or parts as
they receive the order information and necessary steps of the production workflow and carry them
through the whole production process. They may identify themselves at special RFID-reader-gates
which are installed at the beginning of the production line or be updated at each production step.
For automizing the process, data about the order configuration are provided on the RFID-chip. This step
may also be done at the beginning of the production line, before the material may be transferred with
the help of a driver-less or automated transport system or any other kind of robot. As the production
line itself is aware which machines and assembly stations are occupied, the material is delivered to
a fitting open station or must wait for an open slot. Once the material is at the desired location a
robot may pick the material from the carrier and start the production or assembly step. For the whole
production line this means that the station is blocked for other parts. After one production step is
finished, a carrier robot or transport vehicle moves the parts to the next destination. Once the whole
frame is produced and assembled it will be transported to a high-bay storage until a charge is ready for
delivery. Due to the data generated via the RFID-communication the ERP system and PLM systems are
able to track the availability of working material and necessary re-orders as well as finished products.
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Figure 1. Smart factory areas.

The core of the smart factory use case is the shop floor, where four different production shops are
located (see Figure 2) which may be used in sequence or be skipped if a shop process is not necessary
for the chosen material (see Figure 3), e.g., when the material for the frame does not need any grinding
or painting.

Figure 2. Shop floor simulation in Anylogic [10].
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Figure 3. Defined resource pools for shop floor, Software [10].

3.2. Involved Systems, Machines and Tasks

Before it is possible to define the specific agents, an overview about the different roles and tasks
inside the simulation environment needs to be generated. Table 1 summarizes the identified roles and
tasks inside the production process. In a real-world scenario this identification could take place via
different knowledge management approaches executed by the knowledge engineer. Examples are (1)
interviews with the domain experts, in this case, e.g., the production workers or engineers, (2) a silent
observation or shadowing of the manufacturing steps and involved workers, machines and processes,
(3) analysis of existing process descriptions or production plans, (4) rounds of discussions with different
experts involved in the production planning as well as execution, (5) analysis of training plans of new
employees inside the production plant, or (6) a combination of the aforementioned approaches. If there
are already running log files of the production machines, even a process mining would be possible as
this would automatically detect variances or process execution alternatives (7). After the knowledge
engineer has an overview of the environment, as well as the actors and process alternatives it is
important to structure, those results into roles and tasks to later on model the necessary agents for the
MAS. In addition, their beliefs and behavior have to be considered to create a realistic representation
of a real-world entity (e.g., worker, machine). The system part of the MAS has to be modeled based on
detected requirements of the production environment such as dependencies or limitations.

Table 1. Multi-Agent-Systems (MAS) approaches in manufacturing

Year Authors Approach

2017 Büth et al. [45] Introduction of a combined simulation approach applying agent-based
simulation as well as discrete-event simulation towards an industrial
context. The discrete-event part offers elements such as time and events,
passive entities and triggered state changes, while the agent-based part
supports the modeling of the environment, active entities and specific
triggers based on a specific situation.

2017 Musli et al. [46] Analyzed and compared the possibilities of using architecture-based,
multi-agent based and self-organizing based approaches for
self-adaptation in CPPS environments. Their systematic study
indicates that MAS are applicable at least at three layers of the CPS
technology stack.

2018 Dorri, Kanhere and
Jurdak [43]

Description of different application areas for MAS in form of a survey,
one of them being smart grids, indicating that MAS is seen as a viable
method for simulating smart environments.

2018 Rocha et al. [47] Implementation of a use case where a rule based approach is build on
top of a MAS, to have rules support “agents to coordinate the execution,
correctly verify the quality issues and if necessary trigger some recovery
mechanism and strategy.”
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Table 1. Cont.

Year Authors Approach

2018 Suganuma et al. [48] The authors targeted the challenge of creating flexibility between edge
and cloud computing for IoT environments with the help of a multi-agent
platform. This approach should lead to more adaptability with regards
to the environment as well as the user orientation, targeting factors such
as “processing load and task assignment” between edge and cloud.

2019 Filz, Herrmann and
Thiede [49]

Investigation of the application of an agent-based simulation for material
supply chains inside a “matrix-structured manufacturing system”.
Simulation factors such as required new materials per station, transport
of produced goods, usage of automated guided vehicles or locations for
supplies needed to be considered leading to a simulation of uncertain and
dynamic material supply strategies. The authors stress the agent-based
simulation “under consideration of uncertainties” to reach flexibility and
dynamics. On top of this the authors envision a module to analyze the
simulated data for improving the material planning process.

2019 Cruz
Salazar et al. [50]

Proceeded to conduct a systematic review how MAS patterns might be
used for “enabling the migration to CPPS” . The authors predicted a
rapid applicability of MAS in case fixed design patterns might be usable.

2019 Karnouskos et al. [14] Identification of four main challenges of necessary “patterns, interfaces,
metrics and distributed intelligence” to apply MAS in the context of
CPPS. Furthermore, they discussed the necessity of overthinking the
classical automation pyramid towards MAS, due to the cyber–physical
inter-connectivity of CPS entities and their coverage of different layers of
said pyramid.

2019 Gorodetsky et al. [9] According to the authors MAS “tend to become a natural part of CPS
for operational management”. Therefore, they see a direct correlation of
developing CP-MAS which are able to execute tasks inside the CPS
autonomous and which support the concept of digital twins, thus
providing a connectivity of the different agents with real-world and
cyber-world objects for simulations or re-configurations inside the smart
environment.

2019 Pires et al. [51] Concerning the digitial twin concept, the authors created a comparison
of associated technologies for the required phases of modeling, data
acquisition, analytics and processing, which allocates the “agent-based
simulation” within the modeling phase. In this context, they
name Anylogic [10] as one possible software solution for realization.
Furthermore, the authors envision advantages of the application of digital
twins for “process control, process monitoring, predictive maintenance,
operator training, product development” in the manufacturing sector as
well as being beneficial in “real-time monitoring, decision-support based
on real data, simulation/optimization of various operating scenarios and
reduction of costs by saving resources”.

2020 Pantoja et al. [52] Focus on the application of MAS in the area of ubiquitous computing
and embedded systems instead of a whole smart factory. Their idea sees
MAS as a means to create and manage ambient intelligence “in open
environments based on IoT”.

Limitations when creating a simulation are of course the complexity of a real-world production
unit and the involved entities as well as their different behavior. If the goal is to conduct decisions
based on the simulation, it needs to be decided how complex and realistic the simulation needs to be to
make a well-founded decision. MAS are able to represent complex scenarios but this of course requires
the knowledge engineer to analyze the environment in deep and to start a time consuming creation
of the possible different agents and their interaction or dependencies with each other. In this case,
the knowledge engineer and the involved stakeholders need to come to an agreement how detailed
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such a MAS simulation should be and where it is possible to make some more general assumptions
for the behavior of an agent without losing the credibility of the simulation results or real-world
representation. The following tables Tables 2–4 specify the roles, tasks, agents as well as their behavior
for the given use case scenario. For the scenario the number of different agents has been limited to
make the process and implementation easier to understand, while still representing all important
aspects of the production process:

Based on the aforementioned roles a set of agents has been defined. The following table
summarizes the individual agents, their beliefs, desires and intentions. The basic scenario has been
simplified a little bit, in leaving the customer and storage processes of the autonomous storage system
out at the beginning.

Table 2. Roles and tasks in the production process.

No. Roles Role Description Involved Tasks

1 Production
coordinator

Represents employees coordinating and
producing frames. Might be differed into
specific production employees.

Submit configuration data, gather
material for production task, cutting
job, grinding job, painting job,
assembly job

2 Order configurator Represents the order system for configuring
an individualized frame and deducing the
material needed for the specific frame.

Configure product, order product,
submit configuration data

3 Customer Represents the individual customers
ordering different kinds of products

Configure product, order product

4 Material Represents different types of material
needed for producing the aspired frames.

Gather material for production task,
cutting job, grinding job, painting
job, assembly job

5 Driver-less transport
system or automated
guided vehicle

Represents a vehicle operating inside
the smart factory, which transports the
necessary material to and from the different
storages and machines.

Gather material for production task,
cutting job, grinding job, painting
job, assembly job, put final product
into storage

6 Autonomous storage
system

Represents a technical logistic system
for storing goods into storage systems
autonomously.

Gather material for production task,
put final product into storage

7 Cutting Machine Represents the cutting machine(s) and
executed cutting jobs.

Cutting job

8 Grinding Machine Represents the grinding machine(s) and
executed grinding jobs.

Grinding job

9 Painting Machine Represents the painting machine(s) and
executed painting jobs.

Painting job

10 Assembly Machine Represents the Assembly station and
executed assembly jobs.

Assembly job

11 Final product Represents the final product in form of an
individualized picture frame.

Configure product, order product,
put final product into storage

12 Truck Represents the vehicle for transporting new
material to the smart factory.

Material delivery

13 Shipping Truck Represents the vehicle for transporting final
products from the smart factory to the
customer.

Product delivery
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Table 3. Agents and their behavior, part 1: Order production process.

No. Agent Belief Desire
Intention

Agent
Initialization

Agent Action Agent Removal

1 Main Definition of the
current state based
on a state transition
diagram (see Figure 1)

Simulation of the
entire production
process

Coordination of
the initialization
of the different
agents

- -

2 Order
configurator

Defined by choice of
variables: woodColor,
woodNoColor,
aluColor, aluNoColor,
pvcColor or
pcvNoColor

Simulation of the
order process of the
customer

Random choice
of the variables
mentioned under
section beliefs

- -

3 Material Defined by choice of
variables: isWood,
isAlu, isPVC, isGlass,
isAttechment

Simulation of the
production material
of wood profiles,
alumina profiles,
PVC profiles, glass
surfaces, cartonnage
for packaging or other
support material

Random choice
of the variables
mentioned under
section beliefs

- -

Another set of agents specifies the involved machines and vehicles:

Table 4. Agents and their behavior, part 2: Machines and vehicles.

No. Agent Belief Desire
Intention

Agent
Initialization

Agent Action Agent Removal

4 Automated
guided
vehicle

Definition of a
resource pool
-Differentiation
between status
reserved or free

Simulation of
material transport
inside the factory

Agent reserves
a free resource
for simulation
of the transport

Transport inside
the factory

Agent releases
resource→ end
of transport

5 Cutting
Machine

Definition of a
ResourcePool
-Differentiation
between status
reserved or free

Simulation of
cutting process

Agent reserves
free resource→
start of cutting
process

Agent reserves
resource for
defined time
interval →
cutting time.

Agent releases
resource →
end of cutting
process.

6 Grinding
Machine

Definition of a
ResourcePool
-Differentiation
between status
reserved or free

Simulation of
grinding process

Agent reserves
free resource→
start of grinding
process

Agent reserves
resource for
defined time
interval →
grinding time.

Agent releases
resource →
end of grinding
process.

7 Painting
Machine

Definition of a
ResourcePool
-Differentiation
between status
reserved or free

Simulation of
painting process

Agent reserves
free resource→
start of painting
process

Agent reserves
resource for
defined time
interval →
painting time.

Agent releases
resource→ end
of the painting
process.

8 Assembly
Machine

Definition of a
ResourcePool
-Differentiation
between status
reserved or free

Simulation of
assembly process

Agent reserves
free resource
→ start of
assembly
process

Agent reserves
resource for
defined time
interval →
assembly time.

Agent releases
resource→ end
of the assembly
process.

9 Truck Agent
(loaded/unloaded)
arrives continuously
in one-hour time
intervals.

Simulation of
material arrival and
unloading of the
truck

Start material
delivery

Material
unloading

Stop material
delivery

10 Shipping
Truck

Agent
(loaded/unloaded)
arrives continuously
in one-hour time
intervals.

Simulation of
product delivery

Start product
delivery

Truck loading End of product
delivery
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4. Results

In the results section the implemented use case in Anylogic [10] will be introduced, before the
results will be discussed based on a number of KPIs.

4.1. Implementation

The MAS requires process implementations to simulate the interaction between the different
agents and their time-related inter-dependencies. That is the reason why the knowledge engineer has
to detect and analyze the production processes beforehand, as otherwise the behavior and interaction
of the agents would not represent the real-world. For the given scenario the starting point is the order
process. In Figure 4 it is assumed to have an order of a wooden frame with a chosen color.

Figure 4. Transition, Software: [10].

The logical order of producing a wooden frame requires the cutting of the wood, grinding of
edges, additional painting and assembly of the frame via different steps. At the end the frame is
wrapped up in some cardboard box for transport purposes. For the process implementation there
needs to be a ResourcePool which is connected to different nodes representing machine positions.
The capacity of each resource is limited, similar to the real-world limitations of available material.
Figure 5 indicates an example of the implementation of the CuttingMachine-process.
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Figure 5. Process CuttingMachine, Software: [10].

To implement this process the Anylogic Process Modeling Library has been utilized [10].
The cutting process for the agent CuttingMachine is implemented with the help of

• a seize block for reserving a machine instance.
• a rackpick block for picking the necessary material from a material pool and to transport it to the

machine. The specifications about availability of material and mobility are additional simulation
parameters.

• a delay block to simulate the production time
• a release block to simulate the end of the production process and to release the reserved machine

resource and make it available in the ResourcePool

At the beginning and at the end there are queue blocks for simulating the delay or waiting time
for new material or if the machine is currently blocked due to a previous order. The position of the
agent in the simulation may always be defined with a pre- and post-position. The GrindingMachine
and the PaintingMachine are implemented in a similar way, with slight differences due to the fact that
not all materials require grinding and painting.

The AssemblingMachine in Figure 6 is implemented differently as there needs to be different
combine and delay blocks for simulating the different assembly steps and necessary time. This way
the arriving agents and their actions are coordinated and consolidated into a new agent whose result
is a finished picture frame.
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Figure 6. Assembly, Software: [10].

Figure 7 summarizes the logical stations of the whole production line including the different
production areas of the shop floor.

Figure 7. Logical stations of the shop floor, Software: [10].

4.2. Discussion

The evaluation of the MAS simulation detailed above has been executed with the help of time
measure blocks integrated into the MAS. The MAS allows different simulation and in consequence
evaluation criteria based on discrete events or continuous events over time:

While the results above indicate a small number of KPIs, MAS allow different simulation results
of the same scenario. This is mainly due to the varying factors such as configuration of agent behavior,
application of random parameters, artificial speed-up of time-intervals to compare different production
times, on-purpose removal or delay of agents to indicate a delay of failure of real-world entities, such as
production material or production units or re-configuration of paths or processes the agents take inside
the simulation. The knowledge engineer and the production engineer might work together to create
different realistic simulation scenarios and compare their effectiveness for a real-world implementation
or modification of the production-plant or production-process. From a knowledge management
perspective this simulation might be combined with other knowledge-based approaches using CPS
related data for, e.g., further enriching the simulation model or optimizing workflows. While the
given use case has a reduced complexity, it is apparent that in a real-world production unit there are
a lot more dependencies which make the effort of creating a simulation model worthwhile. Table 5
summarizes the simulation results.
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Table 5. Simulation results.

No. Result

Number of
good parts,
bad parts and
rejection rate

An essential criterion is to count all correct produced goods as well as those classified as bad
parts. To vary the simulation a range of good parts in percent has to be defined. Due to the
application of a random number generator the rate of simulated good parts might be higher or
lower. In consequence, a rejection rate might be simulated with the help of a relation between the
number of bad parts and the sum of overall produced parts. The rejection rate shall be lower than
a varying threshold. Both evaluation steps might be combined in a result dashboard visualizing
the number of produced parts, the evaluated good parts as well as bad parts and the resulting
rejection rate. A continuous evaluation of a target number of good parts, e.g., 100, might be used
to detect the necessary time (e.g., lead time) to reach this number.

Lead time, clock
rate and cycle
time

The lead time and its prediction is an essential question in production as indicated in the recent
systematic literature review of Burggräf et al. (2020). The resultes indicate the discussion of
numerous methods from the fields of operations research and machine learning, such as artificial
neural networks [53]. For the given scenario the lead time of an incoming order at time t1 and an
outgoing product at time t2 might be evaluated with the help of a time measure start block and end
block respectively based on the involved incoming and outgoing agents. Incorporating different
time measure blocks for all six production lines allows it to detect the number of produced parts at
any time tn. The simulation uses twelve time measurement blocks of which a starting and ending
block are added per production line respectively. These added blocks are visualized in Figure 8.
This evaluation might be combined with the previous number of good parts and number of bad
parts. For the calculations, time measure functions need to be programmed. These functions
analyze the start time and end time, number of agents, and distribution of agents per time. Based
on these calculations it is, e.g., possible to visualize and compare the number of agents on the x-axis
and the average residence time of each agent in minutes on the y-axis for the production of wood,
alu and pvc frames. Both the clock rate of the production steps and cycle time might be visualized
in one diagram, see Figure 9. The cycle time for the execution of a task is calculated based on
the number of all incoming and outgoing agent objects per clock rate for all six production lines.
Reflecting on the production planning an ideal cycle time might be deduced.

Normal and
manipulated
process

Another evaluation of these criteria is a comparison between a normal and artificially manipulated
production process (e.g., due to missing production material). The exemplary results show for the
chosen parameters of the normal simulation an average lead time of 0.2-time units and in average
76.48 agents circulating the system per time unit. In comparison, the results for the manipulated
simulation indicate an (expected) prolonged average lead time for each agent of 0.3 time units
while constantly increasing. Consequently, the number of agents circulating the system decreases
to about 61.57 agents per time unit, meaning the productivity decreases. The low processing time at
the beginning of this simulation is due to the delays in material supply and unproductive machines.
In the manipulated process a first saddle point of the curve is due to a first failure of a grinding
machine. From there on more failures appear, in consequence repair times are blocking resources
and the lead time curve constantly increases. Instead, for the normal running process the average
lead time moves to a constant value per time unit. In comparison of the two simulations over 5
time units, the manipulated factory is still able to produce goods, but the output is about 20 percent
less than within the normal running one. While this is only exemplary, the small simulation model
allows the integration of other influencing or negative factors and dependencies appearing in the
real world, e.g., time for expert to appear onsite, no fitting spare parts for the problem available,
other delays in logistic processes, unplanned maintenance, etc..

Idle time The idle time is especially interesting for production planning as this KPI might be used for
detecting unproductive time intervals. The calculation of idle times requires functions for each
production step which indicate if the observed production step (e.g., cutting of glass) is idle or not.
Based on these an overall idle time might be calculated and visualized as well as detailed results
for each production step.

Overall
equipment
effectiveness
(oee)

The oee indicates the availability of production machines, the performance and quality of
production. As this is a self defined, combined KPI it is necessary to first calculate the goodParts,
the ideal cycle time and the planned production time, leading to the overall equipment effectiveness

oee =
goodParts · idealCycleTime

plannedProductionTime
· 100

Interesting for the oee is, e.g., at which time interval 50 or 100 percent effectiveness could be
reached and which simulation factors might need to be improved to decrease the required time to
reach these thresholds.
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Figure 8. Time measuring points, Software: [10].

Figure 9. Time visualization of cycle times and clock rates of the produced frames according to their
material, Software: [10].

5. Conclusions

The given paper discusses the applicability of multi-agent-systems in smart factory environments
and showcases a use case scenario of applying MAS for planning, simulating and evaluating a
smart production line and the associated logistical processes with the help of the simulation software
Anylogic [10]. Smart factories and the digitization of production environments are current trends
which will transform the way of producing (individualized and personalized) goods and organizing
production processes. While the transformation will surely happen in the years to come, the effort
of digitizing an existing production environment might be tremendous. The literature study above
indicates that the AI method of MAS is a solution to simulate certain dependencies, processes and
possible failures beforehand as well as support decision-making. The quality of the simulation
depends on the input as well as level of detail, in this case the accuracy of the simulation model and
the simulation parameters. From a knowledge management perspective, it is recommended to involve
a knowledge engineer who talks with and extracts knowledge from the different involved working
groups of the process, such as engineer, production or logistics staff. In addition, he might use existing
documentation (e.g., process models) or observe the target processes beforehand.

Afterwards, this knowledge must be formalized and used for creating the agents representing
real entities of the production process, their personal and machine characteristics and behavior
(normal and abnormal) as well as dependencies. While there are more steps necessary to create
a consistent and realistic simulation as well as refine it after testing, the aforementioned steps
already indicate the required dialogue between different disciplines and expenditure of time. On the
other hand, this work and time spend beforehand saves the time of realizing a perhaps ineffective
digitization measure.
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The simulation scenario shown in the given use case resembles a shop floor consisting of different
elements such as storage units as well as production machines and assembly stations. The industry 4.0
paradigm of having a semi-automated process for producing individualized goods is met with the
possibility of configuring different picture frames using different materials and colors. The evaluation
integrated in the realization part compared and simulated different KPIs in form of a normal (expected)
and manipulated (delayed) process. While the number of KPIs might surely be increased, the examples
already indicate the possibilities for automatically counting, analyzing, comparing and visualizing
the results of the simulation for the respective target group. In case of a real use case this step would
directly indicate where the production process might be ineffective, where goods are delayed or how
the storage capacities might be optimized. While operational research and optimization is certainly no
new discipline, the application of MAS for the emerging field of industry 4.0 and the inter-dependencies
of the aspired cyber–physical production systems creates a field of work where their applicability
suggests direct benefits.

For extending the given work it would of course be possible to integrate more machines,
dependencies and processes into the simulation model and to extend the evaluation part of the
work. The application inside a real production with a similar production process would of course
enhance the model and allow for direct deduction of optimization potentials, decision-making or
general digitization planning. Real data from the CPS might be analyzed with the help of data
or process mining and be used to enrich the model or to detect additional rules or dependencies.
A combination with the concept of digital twins should lead to an even more realistic version of the
simulation model as well as feed this model with real data.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CPS Cyber Physical System
CPPS Cyber Physical Production System
H-M Human-to-Machine
IoT Internet of Things
KPI Key Performance Indicator
MAS Multi-Agent-System(s)
MES Manufacturing Engineering System
ML Machine Learning
M-M Machine-to-Machine
PLM Product Lifecycle Management
RFID Radio Frequency Identification
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