Special Issue ""Algorithmic Complexity in Physics & Embedded Artificial Intelligences"—In Memoriam Ray Solomonoff (1926-2009)"

Quicklinks

A special issue of Algorithms (ISSN 1999-4893).

Deadline for manuscript submissions: closed (31 August 2010)

Special Issue Editor

Guest Editor
Prof. Dr. Juergen Schmidhuber
IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland
Website: http://www.idsia.ch/~juergen/
E-Mail: juergen@idsia.ch
Phone: +41 58 666666 2
Interests: artificial intelligence; machine learning; neural networks; Kolmogorow-complexity; robotics

Special Issue Information

Dear Colleagues,

Is the universe computable, as suggested in the 1940s by Konrad Zuse, inventor of the first working program-controlled computer? With the ascent of virtual realities the idea has become popular, and is now also being taken seriously by physicists, for lack of contrarian physical evidence. Questions to be addressed in this special issue include: Which kind of programs running on which type of computational device could in principle provide a concise description of quantum physics? How can algorithmic complexity theory and Kolmogorov complexity theory guide the quest for simple explanations of the world in the sense of Occam's razor? How do Gödelian limits of mathematics and computation as well as insights from algorithmic information theory restrict the set of valid physical theories, including many world theories? Which sets of computable probability distributions or measures on possible universe histories make sense at all from the perspective of constructive mathematics? Following Solomonoff's theory of optimal inductive inference and algorithmic probability, how can the restrictions embodied by such sets help to predict future events, given past observations in a particular universe? Which testable predictions are made by algorithmic complexity-based theories of physics? Can we in principle design rational decision-making agents or artificial intelligences embedded in computable physics such that their decisions are optimal in reasonable mathematical senses? Which are the fundamental limitations of such decision makers? If physics is hard to compute, can this help to improve cryptography?

Special Issue "In Memoriam Ray Solomonoff" (1926-2009):

The Great Ray Solomonoff, pioneer of Machine Learning, founder of Algorithmic Probability Theory, father of the Universal Probability Distribution, creator of the Universal Theory of Inductive Inference, passed away on Monday 7 December 2009 at age 83. Ray Solomonoff was the first to describe the fundamental concept of Algorithmic Information or Kolmogorov Complexity. In the new millennium his work became the foundation of the first mathematical theory of Optimal Universal Artificial Intelligence. With great sadness the special issue will be "In Memoriam Ray Solomonoff".

Prof. Dr. Juergen Schmidhuber
Guest Editor

Keywords

  • algorithmic complexity
  • algorithmic information theory
  • Kolmogorov complexity
  • descriptive complexity
  • Kolmogorov-Chaitin complexity
  • stochastic complexity
  • algorithmic entropy
  • program-size complexity
  • Chaitin entropy
  • Chaitin complexity

Published Papers (4 papers)

by
Algorithms 2010, 3(4), 329-350; doi:10.3390/a3040329
Received: 30 August 2010; Accepted: 22 September 2010 / Published: 29 September 2010
Show/Hide Abstract | Cited by 1 | PDF Full-text (303 KB)
abstract graphic

by
Algorithms 2010, 3(3), 255-259; doi:10.3390/a30302555
Received: 12 March 2010; Accepted: 14 March 2010 / Published: 20 July 2010
Show/Hide Abstract | PDF Full-text (84 KB)

by
Algorithms 2010, 3(3), 260-264; doi:10.3390/a3030260
Received: 12 March 2010; Accepted: 14 March 2010 / Published: 20 July 2010
Show/Hide Abstract | PDF Full-text (68 KB)

by
Algorithms 2009, 2(3), 879-906; doi:10.3390/a2030879
Received: 8 April 2009; in revised form: 15 June 2009 / Accepted: 16 June 2009 / Published: 2 July 2009
Show/Hide Abstract | Cited by 1 | PDF Full-text (255 KB)
abstract graphic

Last update: 6 March 2014

Algorithms EISSN 1999-4893 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert