Previous Issue
Volume 4, March
 
 

Geomatics, Volume 4, Issue 2 (June 2024) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 1997 KiB  
Article
Feasibility of Using Green Laser for Underwater Infrastructure Monitoring: Case Studies in South Florida
by Rahul Dev Raju, Sudhagar Nagarajan, Madasamy Arockiasamy and Stephen Castillo
Geomatics 2024, 4(2), 173-188; https://doi.org/10.3390/geomatics4020010 - 17 May 2024
Abstract
Scour around bridges present a severe threat to the stability of railroad and highway bridges. Scour needs to be monitored to prevent the bridges from becoming damaged. This research studies the feasibility of using green laser for monitoring the scour around candidate railroad [...] Read more.
Scour around bridges present a severe threat to the stability of railroad and highway bridges. Scour needs to be monitored to prevent the bridges from becoming damaged. This research studies the feasibility of using green laser for monitoring the scour around candidate railroad and highway bridges. The laboratory experiments that provided the basis for using green laser for underwater mapping are also discussed. The results of the laboratory and field experiments demonstrate the feasibility of using green laser for underwater infrastructure monitoring with limitations on the turbidity of water that affects the penetrability of the laser. This method can be used for scour monitoring around offshore structures in shallow water as well as corrosion monitoring of bridges. Full article
24 pages, 9159 KiB  
Article
Unsupervised Image Segmentation Parameters Evaluation for Urban Land Use/Land Cover Applications
by Guy Blanchard Ikokou and Kate Miranda Malale
Geomatics 2024, 4(2), 149-172; https://doi.org/10.3390/geomatics4020009 - 12 May 2024
Viewed by 211
Abstract
Image segmentation plays an important role in object-based classification. An optimal image segmentation should result in objects being internally homogeneous and, at the same time, distinct from one another. Strategies that assess the quality of image segmentation through intra- and inter-segment homogeneity metrics [...] Read more.
Image segmentation plays an important role in object-based classification. An optimal image segmentation should result in objects being internally homogeneous and, at the same time, distinct from one another. Strategies that assess the quality of image segmentation through intra- and inter-segment homogeneity metrics cannot always predict possible under- and over-segmentations of the image. Although the segmentation scale parameter determines the size of the image segments, it cannot synchronously guarantee that the produced image segments are internally homogeneous and spatially distinct from their neighbors. The majority of image segmentation assessment methods largely rely on a spatial autocorrelation measure that makes the global objective function fluctuate irregularly, resulting in the image variance increasing drastically toward the end of the segmentation. This paper relied on a series of image segmentations to test a more stable image variance measure based on the standard deviation model as well as a more robust hybrid spatial autocorrelation measure based on the current Moran’s index and the spatial autocorrelation coefficient models. The results show that there is a positive and inversely proportional correlation between the inter-segment heterogeneity and the intra-segment homogeneity since the global heterogeneity measure increases with a decrease in the image variance measure. It was also found that medium-scale parameters produced better quality image segments when used with small color weights, while large-scale parameters produced good quality segments when used with large color factor weights. Moreover, with optimal segmentation parameters, the image autocorrelation measure stabilizes and follows a near horizontal fluctuation while the image variance drops to values very close to zero, preventing the heterogeneity function from fluctuating irregularly towards the end of the image segmentation process. Full article
(This article belongs to the Topic Urban Land Use and Spatial Analysis)
Show Figures

Figure 1

11 pages, 2019 KiB  
Article
Vector-Algebra Algorithms to Draw the Curve of Alignment, the Great Ellipse, the Normal Section, and the Loxodrome
by Thomas H. Meyer
Geomatics 2024, 4(2), 138-148; https://doi.org/10.3390/geomatics4020008 - 8 May 2024
Viewed by 289
Abstract
This paper recasts four geodetic curves—the great ellipse, the normal section, the loxodrome, and the curve of alignment—into a parametric form of vector-algebra formula. These formulas allow these curves to be drawn using simple, efficient, and robust algorithms. The curve of alignment, which [...] Read more.
This paper recasts four geodetic curves—the great ellipse, the normal section, the loxodrome, and the curve of alignment—into a parametric form of vector-algebra formula. These formulas allow these curves to be drawn using simple, efficient, and robust algorithms. The curve of alignment, which seems to be quite obscure, ought not to be. Like the great ellipse and the loxodrome, and unlike the normal section, the curve of alignment from point A to point B (both on the same ellipsoid) is the same as the curve of alignment from point B to point A. The algorithm used to draw the curve of alignment is much simpler than any of the others and its shape is quite similar to that of the geodesic, which suggests it would be a practical surrogate when drawing these curves. Full article
(This article belongs to the Topic Geocomputation and Artificial Intelligence for Mapping)
Show Figures

Figure 1

14 pages, 1185 KiB  
Article
Exploring Convolutional Neural Networks for the Thermal Image Classification of Volcanic Activity
by Giuseppe Nunnari and Sonia Calvari
Geomatics 2024, 4(2), 124-137; https://doi.org/10.3390/geomatics4020007 - 13 Apr 2024
Viewed by 395
Abstract
This paper addresses the classification of images depicting the eruptive activity of Mount Etna, captured by a network of ground-based thermal cameras. The proposed approach utilizes Convolutional Neural Networks (CNNs), focusing on pretrained models. Eight popular pretrained neural networks underwent systematic evaluation, revealing [...] Read more.
This paper addresses the classification of images depicting the eruptive activity of Mount Etna, captured by a network of ground-based thermal cameras. The proposed approach utilizes Convolutional Neural Networks (CNNs), focusing on pretrained models. Eight popular pretrained neural networks underwent systematic evaluation, revealing their effectiveness in addressing the classification problem. The experimental results demonstrated that, following a retraining phase with a limited dataset, specific networks such as VGG-16 and AlexNet, achieved an impressive total accuracy of approximately 90%. Notably, VGG-16 and AlexNet emerged as practical choices, exhibiting individual class accuracies exceeding 90%. The case study emphasized the pivotal role of transfer learning, as attempts to solve the classification problem without pretrained networks resulted in unsatisfactory outcomes. Full article
Show Figures

Figure 1

32 pages, 3977 KiB  
Review
Geospatial Technology for Sustainable Agricultural Water Management in India—A Systematic Review
by Suryakant Bajirao Tarate, N. R. Patel, Abhishek Danodia, Shweta Pokhariyal and Bikash Ranjan Parida
Geomatics 2024, 4(2), 91-123; https://doi.org/10.3390/geomatics4020006 - 22 Mar 2024
Viewed by 733
Abstract
Effective management of water resources is crucial for sustainable development in any region. When considering computer-aided analysis for resource management, geospatial technology, i.e., the use of remote sensing (RS) combined with Geographic Information Systems (GIS) proves to be highly valuable. Geospatial technology is [...] Read more.
Effective management of water resources is crucial for sustainable development in any region. When considering computer-aided analysis for resource management, geospatial technology, i.e., the use of remote sensing (RS) combined with Geographic Information Systems (GIS) proves to be highly valuable. Geospatial technology is more cost-effective and requires less labor compared to ground-based surveys, making it highly suitable for a wide range of agricultural applications. Effectively utilizing the timely, accurate, and objective data provided by RS technologies presents a crucial challenge in the field of water resource management. Satellite-based RS measurements offer consistent information on agricultural and hydrological conditions across extensive land areas. In this study, we carried out a detailed analysis focused on addressing agricultural water management issues in India through the application of RS and GIS technologies. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, we systematically reviewed published research articles, providing a comprehensive and detailed analysis. This study aims to explore the use of RS and GIS technologies in crucial agricultural water management practices with the goal of enhancing their effectiveness and efficiency. This study primarily examines the current use of geospatial technology in Indian agricultural water management and sustainability. We revealed that considerable research has primarily used multispectral Landsat series data. Cutting-edge technologies like Sentinel, Unmanned Aerial Vehicles (UAVs), and hyperspectral technology have not been fully investigated for the assessment and monitoring of water resources. Integrating RS and GIS allows for consistent agricultural monitoring, offering valuable recommendations for effective management. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop