Next Issue
Previous Issue

Table of Contents

Designs, Volume 1, Issue 2 (December 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-4
Export citation of selected articles as:

Research

Open AccessFeature PaperArticle A Platform with Multiple Head-Mounted Displays for Advanced Training in Modern Driving Schools
Designs 2017, 1(2), 8; doi:10.3390/designs1020008
Received: 22 September 2017 / Revised: 6 October 2017 / Accepted: 10 October 2017 / Published: 13 October 2017
PDF Full-text (4069 KB) | HTML Full-text | XML Full-text
Abstract
Automotive manufacturers and suppliers develop new vehicle systems, such as Advanced Driver Assistance Systems (ADAS), to increase traffic safety and driving comfort. ADAS are technologies that provide drivers with essential information or take over demanding driving tasks. More complex and intelligent vehicle systems
[...] Read more.
Automotive manufacturers and suppliers develop new vehicle systems, such as Advanced Driver Assistance Systems (ADAS), to increase traffic safety and driving comfort. ADAS are technologies that provide drivers with essential information or take over demanding driving tasks. More complex and intelligent vehicle systems are being developed toward fully autonomous and cooperative driving. Apart from the technical development challenges, training of drivers with these complex vehicle systems represents an important concern for automotive manufacturers. This paper highlights the new evolving requirements concerning the training of drivers with future complex vehicle systems. In accordance with these requirements, a new training concept is introduced, and a prototype of a training platform is implemented for utilization in future driving schools. The developed training platform has a scalable and modular architecture so that more than one driving simulator can be networked to a common driving instructor unit. The participating driving simulators provide fully immersive visualization to the drivers by utilizing head-mounted displays instead of conventional display screens and projectors. The driving instructor unit consists of a computer with a developed software tool for training session control, monitoring, and evaluation. Moreover, the driving instructor can use a head-mounted display to participate interactively within the same virtual environment of any selected driver. A simulation model of an autonomous driving system was implemented and integrated in the participating driving simulators. Using this simulation model, training sessions were conducted with the help of a group of test drivers and professional driving instructors to prove the validity of the developed concept and show the usability of the implemented training platform. Full article
(This article belongs to the Special Issue Road Vehicle Safety: Design and Assessment)
Figures

Open AccessArticle Design of Post-Consumer Modification of Standard Solar Modules to Form Large-Area Building-Integrated Photovoltaic Roof Slates
Designs 2017, 1(2), 9; doi:10.3390/designs1020009
Received: 11 October 2017 / Revised: 13 November 2017 / Accepted: 14 November 2017 / Published: 17 November 2017
PDF Full-text (5424 KB) | HTML Full-text | XML Full-text
Abstract
Building-integrated photovoltaic (BIPV) systems have improved aesthetics but generally cost far more than conventional PV systems because of small manufacturing scale. Thus, in the short and medium term, there is a need for a BIPV mounting system that utilizes conventional modules. Such a
[...] Read more.
Building-integrated photovoltaic (BIPV) systems have improved aesthetics but generally cost far more than conventional PV systems because of small manufacturing scale. Thus, in the short and medium term, there is a need for a BIPV mounting system that utilizes conventional modules. Such a design is provided here with a novel modification of conventional photovoltaic (PV) modules to allow them to act as BIPV roofing slates. The open-source designs for the mechanical components necessary to provide the post-consumer conversion for a conventional PV module are provided, and prototypes are fabricated and installed on a mock roof system along with control modules mounted conventionally. The approximately U.S.$22/module BIPV roof-mounted system is direct mounted on the roof to eliminate the need for roofing shingles or other coverings, which effectively provides a 20% total cost reduction from conventional racking systems that demand a roof to mount upon without considering the savings from the rack itself. The results of the outdoor system testing found no water leaks. An increased operating temperature was observed, which would reduce the output from a silicon-based PV module by less than 10%. The results found significant potential for this design to further reduce total PV systems costs. Full article
Figures

Open AccessArticle A New Observer Design for Fuzzy Bilinear Systems with Unknown Inputs
Designs 2017, 1(2), 10; doi:10.3390/designs1020010
Received: 3 September 2017 / Revised: 16 November 2017 / Accepted: 16 November 2017 / Published: 21 November 2017
PDF Full-text (319 KB) | HTML Full-text | XML Full-text
Abstract
An observer design for a class of nonlinear systems with unknown inputs is considered. Takagi–Sugeno fuzzy bilinear systems represent a wide class of nonlinear systems, and these systems with unknown inputs are an ideal model for many physical systems. For such systems, a
[...] Read more.
An observer design for a class of nonlinear systems with unknown inputs is considered. Takagi–Sugeno fuzzy bilinear systems represent a wide class of nonlinear systems, and these systems with unknown inputs are an ideal model for many physical systems. For such systems, a design method for obtaining an observer that estimates the state of the system is proposed. A parallel distributed observer (PDO), which is constructed with local linear observers and the appropriate grade of the membership functions, is a conventional observer for Takagi–Sugeno fuzzy bilinear systems. However, it is known that its design conditions have conservativeness. In this paper, to reduce the conservatism in the design conditions, non-PDO with new design conditions is proposed. Our design conditions are derived from a multiple Lyapunov function, which depends on the membership function with time-delay in the premise variables. This method eventually reduces the conservatism and enables us to construct an observer for a wide class of nonlinear systems. When the premise variables are the state variables that are not measurable, Takagi–Sugeno fuzzy bilinear systems can represent a wider class of nonlinear systems. Hence, an observer design for fuzzy bilinear systems with unmeasurable premise variables is also proposed. Finally, numerical examples are given to illustrate our design methods. Full article
Figures

Figure 1

Open AccessArticle A Structurally Enhanced, Ergonomically and Human–Computer Interaction Improved Intelligent Seat’s System
Designs 2017, 1(2), 11; doi:10.3390/designs1020011
Received: 28 September 2017 / Revised: 9 November 2017 / Accepted: 18 November 2017 / Published: 29 November 2017
PDF Full-text (17744 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Modern technology advances airplane seat design with better ergonomics and new HCI (human-computer interaction). However, airline companies are not motivated to replace the seat system due to the cost consideration. Hence, a series of re-optimized design in ergonomics and HCI should be carried
[...] Read more.
Modern technology advances airplane seat design with better ergonomics and new HCI (human-computer interaction). However, airline companies are not motivated to replace the seat system due to the cost consideration. Hence, a series of re-optimized design in ergonomics and HCI should be carried out by designers. This paper describes a novel intelligent seat’s system, which is designed to be used for the airplanes or similar conditions. This system consists of redesigned ergonomics and HCI compared with original seat’s systems. The mainly redesigned parts are the aesthetics and visual modeling for people to receive visual information, the ergonomics part for people to receive tactile information, new users’ action innovation for people to receive and output information, the redesign of the structure of the system with low weight and cost, and the functional system environment for people to receive information from humans through movement in multiple environments. Structural analysis supports the redesign. The purpose of the redesign is to improve the HCI system with new tech and interaction. Full article
(This article belongs to the Special Issue Road Vehicle Safety: Design and Assessment)
Figures

Back to Top