Previous Issue
Volume 9, April
 
 

Fishes, Volume 9, Issue 5 (May 2024) – 20 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
23 pages, 5655 KiB  
Article
Effect of Toxicity of Chromium (VI) Stressors Alone and Combined to High Temperature on the Histopathological, Antioxidation, Immunity, and Energy Metabolism in Fish Phoxinus lagowskii
by Tingting Hu, Cunrun Ye, Zhaoyang Ning, Tianmei Liu and Weijie Mu
Fishes 2024, 9(5), 168; https://doi.org/10.3390/fishes9050168 (registering DOI) - 05 May 2024
Viewed by 96
Abstract
Fish in aquatic ecosystems are often impacted by environmental stressors like temperature fluctuations and exposure to heavy metals. Chromium (Cr6+) is a known environmental pollutant that poses a threat to aquatic life. Various environmental factors, such as water temperature, have been [...] Read more.
Fish in aquatic ecosystems are often impacted by environmental stressors like temperature fluctuations and exposure to heavy metals. Chromium (Cr6+) is a known environmental pollutant that poses a threat to aquatic life. Various environmental factors, such as water temperature, have been found to affect the toxicity of dissolved chemicals in aquatic ecosystems. We investigated the toxicity of combinations of different concentrations of hexavalent chromium (Cr6+) with high temperatures in fish. Hematological indices demonstrated changes in white blood cells (WBCs), hematocrit (HCT), red blood cells (RBCs), and hemoglobin (Hb) levels during the exposure. The qualitative and semi-quantitative analyses of different tissues confirmed that higher concentrations of Cr6+ caused more significant damage than lower concentrations, with evident alterations observed in circulatory and regressive aspects. Furthermore, brain acetylcholinesterase levels decreased in both single heavy metal exposure and combined exposure at a high temperature. The activity of antioxidant oxidase and immunological parameters increased in all treatment groups compared with the control group following long-term exposure. A significant and increased effect of Cr6+ in the high-temperature groups was observed on the evaluated biomarkers, suggesting a possible synergistic effect between Cr6+ and increased temperature. The integrated biomarker response (IBR) reported the highest level of stress at 10 mg/L Cr6+ combined with high temperature. The IBR analysis revealed that the highest activity of response enzymes, such as acid phosphatase (ACP), superoxide dismutase (SOD), and glutathione S-transferases (GST), was observed in the liver, whereas the gills displayed alkaline phosphatase (ALP), GST, and SOD activity, and the kidneys demonstrated SOD, ACP, and aspartate aminotransferase (AST) to be most active. Through histopathology, antioxidant enzymes, and metabolism- and immunity-related enzymes, we determined that high temperatures enhance the potential toxicity of Cr6+ in fish. We recommend conducting a thorough assessment of the impact of climate change, particularly temperature fluctuations, when studying the toxic effects of metal pollution, like chromium, in aquatic ecosystems. Full article
25 pages, 479 KiB  
Review
The Role of Functional Feed Additives in Enhancing Aquaculture Sustainability
by Abigail John Onomu and Grace Emily Okuthe
Fishes 2024, 9(5), 167; https://doi.org/10.3390/fishes9050167 (registering DOI) - 05 May 2024
Viewed by 91
Abstract
Aquaculture serves as a source of protein and livelihood and is an alternative to capture fisheries, thereby reducing pressure on the wild. However, aquaculture tends to be limited by sustainability issues, which include overdependency on fishmeal, the high cost associated with fishmeal, the [...] Read more.
Aquaculture serves as a source of protein and livelihood and is an alternative to capture fisheries, thereby reducing pressure on the wild. However, aquaculture tends to be limited by sustainability issues, which include overdependency on fishmeal, the high cost associated with fishmeal, the environmental impact of aquaculture activities, which may be detrimental to aquatic lives and the environment, and the use of antibiotics to treat diseases, which may have an adverse effect in their host or the environment. Efforts are being made toward attaining practical ways to enhance aquaculture sustainability. One such effort is using functional feed additives in feed formulation. Functional feed additives are dietary ingredients incorporated in feed formulations, not only for the usual provision of basic nutritional requirements as offered by traditional feed but also for growth and health enhancement ; environmental and economic gain. This review emphasizes the importance of incorporating functional feed additives such as probiotics, prebiotics, symbiotics, and phytogenics. This study evaluates and presents holistic information on functional additives, their roles in enhancing aquaculture sustainability, and the challenges encountered in their application. Full article
(This article belongs to the Special Issue Feed Additives in Aquaculture)
12 pages, 962 KiB  
Article
Assessing the Conservation Value of Artificial and Natural Reefs via Ichthyoplankton Spatio-Temporal Dynamics
by Carlos Adrián Sánchez-Caballero, José Manuel Borges-Souza, Ricardo Javier Saldierna-Martínez and Avigdor Abelson
Fishes 2024, 9(5), 166; https://doi.org/10.3390/fishes9050166 (registering DOI) - 04 May 2024
Viewed by 392
Abstract
The distribution of fish eggs and larvae (ichthyoplankton) reflects spawning and nursery areas as well as dispersal routes. This study’s goal is to demonstrate how the identification of ichthyoplankton species and stages and their spatial distribution among natural reefs (NRs) and artificial reefs [...] Read more.
The distribution of fish eggs and larvae (ichthyoplankton) reflects spawning and nursery areas as well as dispersal routes. This study’s goal is to demonstrate how the identification of ichthyoplankton species and stages and their spatial distribution among natural reefs (NRs) and artificial reefs (ARs) may serve as decision-making tools in conservation and fishery management. Natural reefs exhibited an eight-times higher abundance of eggs, as well as the highest abundance of larvae in the yolk-sac and preflexion phases. In contrast, ARs had the highest abundance of larvae in the flexion and postflexion phases. Natural reefs may serve as breeding grounds for Scaridae, Labridae, and Mugilidae; whereas, ARs may serve as breeding sites for Lutjanidae, Synodontidae, Carangidae, Fistularidae, and Haemulidae. Our study revealed differences between ARs and NRs, which demonstrate the potential of artificial reefs to expand the supply and settlement options of reef fishes and consequently can lead to increased fish production with potential benefits to adjacent fishing areas through connectivity. Thus, ARs as no-take sites can be effective tools for both fishery management and biodiversity conservation. The findings highlight the potential use of ichthyoplankton tools and the importance of considering both types of reefs in marine conservation and management efforts. Full article
(This article belongs to the Special Issue Biology and Ecology of Coral Reef Fishes)
Show Figures

Figure 1

21 pages, 2937 KiB  
Article
Circularity Assessment in Aquaculture: The Case of Integrated Multi-Trophic Aquaculture (IMTA) Systems
by Daniel Checa, Brett M. Macey, John J. Bolton, Marissa Brink-Hull, Pauline O’Donohoe, Alessandro Cardozo, Luis Henrique Poersch and Inmaculada Sánchez
Fishes 2024, 9(5), 165; https://doi.org/10.3390/fishes9050165 (registering DOI) - 04 May 2024
Viewed by 253
Abstract
Aquaculture is a strategic sector that aims to meet the increased demands for healthy food for current and future populations. However, this progression needs to be sustainable, which can potentially be achieved by the implementation of circular practices. Integrated multi-trophic aquaculture (IMTA) systems [...] Read more.
Aquaculture is a strategic sector that aims to meet the increased demands for healthy food for current and future populations. However, this progression needs to be sustainable, which can potentially be achieved by the implementation of circular practices. Integrated multi-trophic aquaculture (IMTA) systems promote the incorporation of circular principles. Nevertheless, the lack of harmonized definitions and standards impedes the quantification of these circular attributes. This study aims to explore the potential principles embedded in IMTA and the existing alternatives to quantify circularity. Two basic pillars (nutrient management and resource use efficiency) were identified as the most relevant circularity attributes for IMTA systems and were quantified through aquaculture-specific indicators. Bioremediation indicators, together with the efficiency indicators in terms of feed, water, energy, and infrastructure materials used, were selected to evaluate the circularity performance of four IMTA trials in three aquaculture facilities in Ireland, Brazil, and South Africa. Salmon, white shrimp, tilapia, abalone, and sea urchins were studied and cultivated together in various combinations with several low-trophic species in these IMTA trials to evaluate the improvement in circularity compared with corresponding monoculture conditions. The results showed an increase in circularity of up to 90% in terms of water recirculation, as well as bioremediation, which was improved by 80%–90%, providing evidence for the potential role of IMTA in the circularity transition. Full article
(This article belongs to the Special Issue Integrated Aquaculture and Monoculture of Low-Trophic Species)
Show Figures

Figure 1

17 pages, 1990 KiB  
Article
Genetic Basis for Morphological Variation in the Zebrafish Danio rerio: Insights from a Low-Heterozygosity Line
by Gil Martinez-Bautista, Pamela Padilla and Warren W. Burggren
Fishes 2024, 9(5), 164; https://doi.org/10.3390/fishes9050164 - 02 May 2024
Viewed by 310
Abstract
Data variability complicates reproducibility and the interpretation of experimental results. Different animal models have been employed to decrease variability to enhance experimental power. However, variation frequently persists among and within strains/lines. In zebrafish (Danio rerio), inbred lines (e.g., NHGRI-1) derived from [...] Read more.
Data variability complicates reproducibility and the interpretation of experimental results. Different animal models have been employed to decrease variability to enhance experimental power. However, variation frequently persists among and within strains/lines. In zebrafish (Danio rerio), inbred lines (e.g., NHGRI-1) derived from wild-type lines have been produced to greatly decrease genetic variation, with the goal of providing better understanding of genetic backgrounds that may influence the experimental outcome of studies employing such lines. We hypothesized that variations in morphological phenotypes shaped by environmental stressors early in development are correlated with the intrinsic degree of genetic variability of zebrafish lines. We compared morphological variability (yolk–chorion ratio, body mass, embryo mass, total length, condition factor, and specific growth rate) in wild-type AB and NHGRI-1 zebrafish lines as a function of their responses to altered temperature and oxygen availability during the first 7 days post-fertilization. Overall, both lines showed similar developmental trajectories for yolk–chorion ratio, embryo mass, and total length. Additionally, condition factor and specific growth rate showed similar responses within each line, regardless of temperature and hypoxia. Importantly, the coefficient of variation for each variable was significantly lower in NHGRI-1 than AB larvae for 151 of 187 assessed morphological endpoints. Thus, the low-heterozygosity NHGRI-1 zebrafish line can be useful for decreasing inter-individual variation in morphological responses to environmental stressors, thereby aiding in the interpretation of results and enhancing experimental reproducibility. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Graphical abstract

18 pages, 1847 KiB  
Review
Supposed Virulence Factors of Flavobacterium psychrophilum: A Review
by Věra Vaibarová and Alois Čížek
Fishes 2024, 9(5), 163; https://doi.org/10.3390/fishes9050163 - 30 Apr 2024
Viewed by 395
Abstract
Flavobacterium psychrophilum is currently one of the most important pathogens in aquaculture worldwide, causing high losses to farmed salmonids particularly during early growth stages with significant economic impact. Despite previous attempts, no effective vaccine has been developed, and protection against introduction into farms [...] Read more.
Flavobacterium psychrophilum is currently one of the most important pathogens in aquaculture worldwide, causing high losses to farmed salmonids particularly during early growth stages with significant economic impact. Despite previous attempts, no effective vaccine has been developed, and protection against introduction into farms is difficult due to the ubiquitous occurrence of the pathogen. A better understanding of the mechanism of disease development is essential for targeted therapeutic and preventive measures in farms. Unfortunately, the pathogenesis of diseases caused by F. psychrophilum has not been elucidated yet. Previously, several putative virulence factors have been identified. Some appear to be essential for disease development, while others are probably dispensable. The importance of some factors has not yet been explored. This review focuses on the supposed virulence factors of F. psychrophilum and the current knowledge about their importance in the pathogenesis of the disease. Full article
(This article belongs to the Special Issue Fish Pathogens: Infection and Biological Control)
Show Figures

Figure 1

20 pages, 1990 KiB  
Article
Queen Triggerfish Balistes vetula Age-Based Population Demographics and Reproductive Biology for Waters of the North Caribbean
by Jesús M. Rivera Hernández and Virginia R. Shervette
Fishes 2024, 9(5), 162; https://doi.org/10.3390/fishes9050162 - 29 Apr 2024
Viewed by 653
Abstract
Queen triggerfish Balistes vetula is an important reef-associated species for commercial fisheries in the U.S. Caribbean. It exhibits a relatively unique reproductive strategy as a nesting benthic spawner, investing substantial energy in territorial defense, building and maintaining nests, and caring for fertilized eggs [...] Read more.
Queen triggerfish Balistes vetula is an important reef-associated species for commercial fisheries in the U.S. Caribbean. It exhibits a relatively unique reproductive strategy as a nesting benthic spawner, investing substantial energy in territorial defense, building and maintaining nests, and caring for fertilized eggs during the reproductive season. Prior to this study, no comprehensive life history information existed in the literature for queen triggerfish. This study provides the first comprehensive documentation of age, growth, size/age at sexual maturity, reproductive seasonality, and reproductive output for a Balistes species in the Caribbean. From 2013 to 2023, we collected 2190 fish samples from fisheries-dependent and -independent sources from the waters of Puerto Rico and the U.S. Virgin Islands. Fish ranged from 67 to 477 mm fork length (FL). We documented that queen triggerfish is sexually dimorphic with males attaining larger mean sizes-at-age compared to females and the species is characterized by a moderately young age at median sexual maturity (A50 = 3.3 y). The maximum age for our U.S. Caribbean samples was 23 y based on increment counts from otoliths. Spawning season encompassed the months of December to August in the region, and female spawning frequency ranged from an estimated 2 to 84 times per year; female spawning frequency increased with increasing size and age of fish. We documented that commercial fishers in the U.S. Caribbean mainly target “plate-size” individuals, defined in our study as 235–405 mm FL, which appears to act as a self-imposed slot size range limit and results in the fishery not removing individuals in the smallest and largest size groups at high rates. The percentage of immature fish from fisheries-dependent sources was close to 0 (0.8%). Commercial fishing for queen triggerfish in the region currently appears to be sustainable, but monitoring of the population should continue. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Graphical abstract

13 pages, 5609 KiB  
Article
Does the Artificial Enhancement and Release Activity Affect the Genetic Diversity of Marbled Rockfish Sebastiscus marmoratus in Zhoushan Waters?
by Senping Jiang, Xinyi Chen, Pengfei Li, Haoxue Wang, Jiji Li, Kaida Xu and Yingying Ye
Fishes 2024, 9(5), 161; https://doi.org/10.3390/fishes9050161 - 28 Apr 2024
Viewed by 224
Abstract
Artificial enhancement and release activity is an important method in the restoration of fishery resources. In order to understand the possible genetic effect of hatchery-released populations on wild populations during the artificial enhancement and release activities of Sebastiscus marmoratus in Zhoushan waters, we [...] Read more.
Artificial enhancement and release activity is an important method in the restoration of fishery resources. In order to understand the possible genetic effect of hatchery-released populations on wild populations during the artificial enhancement and release activities of Sebastiscus marmoratus in Zhoushan waters, we utilized mitochondrial DNA control region sequences to examine the genetic diversity in four S. marmoratus populations, including one farmed population, one released population and two wild populations. A total of 68 haplotypes from 123 individuals were detected, including 3 shared haplotypes. Haplotype diversity ranged from 0.944 to 0.980, with a mean of 0.966. The nucleotide diversity ranged from 0.020 to 0.025, with a mean of 0.022. Analysis of Molecular Variance (AMOVA) indicated that the primary genetic variation occurs within populations and the index of genetic differentiation between populations (FST) among the four populations showed no differentiation. The results indicate that the current artificial enhancement and release has not impacted the S. marmoratus population in Zhoushan waters. Continued long-term monitoring is essential to protect the high-quality germplasm resources of S. marmoratus. Full article
Show Figures

Graphical abstract

25 pages, 1351 KiB  
Review
Adriatic Sea Fishery Product Safety and Prospectives in Relation to Climate Change
by Edmond Hala and Rigers Bakiu
Fishes 2024, 9(5), 160; https://doi.org/10.3390/fishes9050160 - 28 Apr 2024
Viewed by 316
Abstract
This bibliographic study addresses key aspects related to fishing, product safety, and climate change in the Adriatic Sea region. The examination of product safety focuses on the assessment of contaminants originating from human activities such as industry, mining, agriculture, and household waste disposal. [...] Read more.
This bibliographic study addresses key aspects related to fishing, product safety, and climate change in the Adriatic Sea region. The examination of product safety focuses on the assessment of contaminants originating from human activities such as industry, mining, agriculture, and household waste disposal. The contamination of the aquatic environment has emerged as a pressing global concern, extending to the Adriatic basin. Aquatic organisms, including fish, are prone to accumulating pollutants directly from polluted water sources and indirectly through the food web. The bio-accumulation of potentially hazardous substances, particularly heavy metals, pesticides, PCBs, PAHs, and antibiotic resistance in aquatic organisms, poses a significant threat to human health. Climate change effects will deplete our seafood supply in terms of quantity and safety owing to negative consequences such as higher levels of pollution, parasites, viruses, infections, acidification, and toxicities such as shellfish poisoning. Global food safety strategies should be developed to reduce greenhouse gas emissions and promote environmentally friendly technology, which indirectly affects seafood quality and microbiological safety, especially for the Adriatic Sea, which is part of the Mediterranean Sea, characterized by the most polluted waters in the world. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
Show Figures

Figure 1

21 pages, 6989 KiB  
Article
Mechanistic Insights into Nonylphenol Stress on BMP2 and BMP4 Gene Expression in Red Crucian Carp (Carassius auratus red var.)
by Die Li, Xiaojuan Cui, Shuailin Chen, Jia Xu, Yujing Li, Qiongyu Zhang and Yuandong Sun
Fishes 2024, 9(5), 159; https://doi.org/10.3390/fishes9050159 - 28 Apr 2024
Viewed by 175
Abstract
Nonylphenol (NP) is a known endocrine-disrupting chemical (EDC) that has been shown to affect bone development in mammals. However, the detrimental impacts of NP on the skeletal growth and development of aquatic species, especially bony fish, remain poorly understood. Bone morphogenic proteins (BMPs), [...] Read more.
Nonylphenol (NP) is a known endocrine-disrupting chemical (EDC) that has been shown to affect bone development in mammals. However, the detrimental impacts of NP on the skeletal growth and development of aquatic species, especially bony fish, remain poorly understood. Bone morphogenic proteins (BMPs), essential for bone formation and osteoblast differentiation, act through the BMP-Smad signaling pathway. In this study, two BMP genes, BMP2 and BMP4, were cloned and characterized in the red crucian carp (Carassius auratus red var.). The full-length cDNAs of BMP2 and BMP4 were 2029 bp and 2095 bp, respectively, encoding polypeptides of 411 and 433 amino acids, and share a typical TGF-β domain with other BMPs. The tissue expression patterns of both genes were identified, showing ubiquitous expression across all studied tissues. Additionally, the exposure of embryos or adult fish to NP stress resulted in a downregulation of BMP2, BMP4, and other genes associated with the BMP-Smad signaling pathway. Moreover, the combined treatment of adult fish with NP and the specific BMP receptor inhibitor significantly reduced these genes’ expression. These findings elucidate the mechanism of NP stress on BMP2 and BMP4, suggesting a role for the BMP-Smad signaling pathway in the response to endocrine-disrupting chemicals in fish. Full article
(This article belongs to the Special Issue Genetics and Breeding in Aquaculture)
Show Figures

Figure 1

19 pages, 4716 KiB  
Article
TMT-Based Quantitative Proteomics Reveal the Metabolic Changes Underlying Growth Superiority in a Novel Gymnocypris Hybrid, Gymnocypris przewalskii ♀ × G. eckloni
by Yanzhen Dong, Junming Zhou, Dayong Xu, Yun Zhao and Dongming Qi
Fishes 2024, 9(5), 158; https://doi.org/10.3390/fishes9050158 - 28 Apr 2024
Viewed by 204
Abstract
Hybrid breeding is an effective approach to generate better varieties and prevent variety degradation. The present study investigated the metabolic changes underlying growth superiority in the novel Gymnocypris hybrid (GH), Gymnocypris przewalskii ♀ (GP) × G. eckloni ♂ (GE). The ranking of survival [...] Read more.
Hybrid breeding is an effective approach to generate better varieties and prevent variety degradation. The present study investigated the metabolic changes underlying growth superiority in the novel Gymnocypris hybrid (GH), Gymnocypris przewalskii ♀ (GP) × G. eckloni ♂ (GE). The ranking of survival rate was GH > GE > GP, whereas the ranking of growth rate was GE > GH > GP. A proteomic analysis of G. hybrid and its parents was conducted to elucidate the metabolic changes underlying growth superiority. Identified pathways were primarily associated with amino acid, carbohydrate, energy, lipid, and nucleotide metabolism. These metabolic pathways, which are closely associated with growth, are controlled through regulation of the expression of numerous proteins, including adenosylhomocysteinase, hydroxypyruvate reductase, glutamate-cysteine ligase, L-lactate dehydrogenase, creatine kinase, GDP-L-fucose synthase, pyruvate kinase, fructose-bisphosphate aldolase, carbonic anhydrase, phosphopyruvate hydratase, phosphoglycerate kinase, S-(hydroxymethyl) glutathione dehydrogenase, and AMP deaminase. Real-time PCR assays showed that the level of mRNA expression of differentially expressed genes was positively correlated with growth. Proteins that were differentially expressed in GH exhibited fewer differences from GP and more differences from GE. These data are the first to reveal the molecular mechanism whereby growth is regulated in G. hybrid and its parents at the protein level. The study thus provides important information for genetic breeding and improvement of G. hybrid for aquaculture production. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

14 pages, 5372 KiB  
Article
Mechanism of Ligilactobacillus salivarius GX118 in Regulating the Growth of Rainbow Trout (Oncorhynchus mykiss) and Resistance to Aeromonas salmonicida Infection
by Xiyu Cao, Bowen Wang, Wenhao Ren, Jiang Wang, Qi Liu, Yichao Ren and Xianliang Meng
Fishes 2024, 9(5), 157; https://doi.org/10.3390/fishes9050157 - 27 Apr 2024
Viewed by 270
Abstract
Lactic acid bacteria Ligilactobacillus salivarius has been shown to be a substitute for antibiotics in the treatment of bacterial disease in high animals. However, its beneficial mechanism in fish farming is still unclear. This study evaluated the antagonistic effects of the Ligilactobacillus salivarius [...] Read more.
Lactic acid bacteria Ligilactobacillus salivarius has been shown to be a substitute for antibiotics in the treatment of bacterial disease in high animals. However, its beneficial mechanism in fish farming is still unclear. This study evaluated the antagonistic effects of the Ligilactobacillus salivarius GX118 strain on Aeromonas salmonicida and its regulation of rainbow trout growth in vivo and in vitro. The results found that GX118 produces an antibacterial substance that can directly destroy the cell wall of A. salmonicida. Whole-genome sequencing of GX118 revealed that Enterolysin A is a type III bacteriocin with antibacterial properties. An in vivo experiment showed that the supplementation of GX118 in diet competitively inhibited the colonization of A. salmonicida in the intestine. In addition, it was able to improve the growth performance of rainbow trout within a 21-day feeding experiment. The supplementation of GX118 increased the diversity of gut microbiota, in which the abundance of Bacteroidota, Blautia, and Rhodobacteraceae increased. In addition, the use of GX118 activated the expression of IFN-γ and NF-κB genes and reduced the expression level of IL-6 and IL-8, thus exhibiting a certain effect on activating the immunity of rainbow trout. This study provides a scientific basis for the development of antibacterial probiotics in the healthy farming of rainbow trout. Full article
(This article belongs to the Special Issue Fish Diseases Diagnostics and Prevention in Aquaculture)
Show Figures

Figure 1

17 pages, 3613 KiB  
Article
Analysis of Driving Factors for Fluctuations in China’s Tuna Product Exports from 2002 to 2022
by Lu Zhu, Chenxing Yang, Zhenhao Yang, Zehua Lv, Feng Wu and Jiangfeng Zhu
Fishes 2024, 9(5), 156; https://doi.org/10.3390/fishes9050156 - 26 Apr 2024
Viewed by 202
Abstract
Tuna products are among the most popular seafoods in the world and widely traded across the globe. China is a major contributor to the worldwide tuna industry as both a producer and an exporter. Employing the Constant Market Share model, this study examines [...] Read more.
Tuna products are among the most popular seafoods in the world and widely traded across the globe. China is a major contributor to the worldwide tuna industry as both a producer and an exporter. Employing the Constant Market Share model, this study examines the factors influencing the variations in China’s tuna exports from 2002 to 2022, focusing on global, country, and product type levels. Results show that (1) China’s expanded tuna exporting trade is partially due to the rising worldwide demand for tuna, which is mostly prominent in China’s tuna exports to the USA, Vietnam, and Malaysia, as well as its exports of frozen tuna products. (2) China’s competitive edge in tuna exports has steadily strengthened in most of its principal exporting markets, especially in Japan and the fresh tuna markets. Nevertheless, the competitiveness structure of Chinese tuna exports has challenges in satisfying the diverse requirements of different nations (regions) for various types of tuna products. (3) The second-order effect has been the primary driver of the expansion in Chinese tuna exports, with its contribution rate consistently rising in recent years. In response to the changes in international and domestic tuna markets, China must implement strategies to maximize the potential of the tuna importing market, further improve its global competitiveness, enhance communication and coordination among domestic and international tuna stakeholders, and cultivate domestic tuna markets. Full article
(This article belongs to the Special Issue Green Growth and Sustainable Development in Fishery and Aquaculture)
Show Figures

Figure 1

18 pages, 5792 KiB  
Article
Dynamic Changes of Environment and Gut Microbial Community of Litopenaeus vannamei in Greenhouse Farming and Potential Mechanism of Gut Microbial Community Construction
by Hui Li, Shuwen Gu, Libao Wang, Wenjun Shi, Qi Jiang and Xihe Wan
Fishes 2024, 9(5), 155; https://doi.org/10.3390/fishes9050155 - 26 Apr 2024
Viewed by 411
Abstract
The aim of this study was to investigate the dynamic changes in the microbial communities of both the environment and gut of Litopenaeus vannamei, as well as to elucidate the mechanisms underlying microbial community assembly in greenhouse farming. 16S rDNA high-throughput sequencing and [...] Read more.
The aim of this study was to investigate the dynamic changes in the microbial communities of both the environment and gut of Litopenaeus vannamei, as well as to elucidate the mechanisms underlying microbial community assembly in greenhouse farming. 16S rDNA high-throughput sequencing and bioinformatics methods were used to carry out the research on the community structure of the microorganisms under greenhouse culture conditions in water, sediment, and gut microorganisms; correlations pertaining to environmental factors; the feasibility of using Source Tracker; and the mechanisms of community construction. The results show that the dominant microorganisms in water, sediment, and gut farming in a greenhouse environment varied and were subject to dynamic change. A variety of beneficial microbiota such as Bacillus were found in the gut, whereas a variety of microorganisms such as Marivita and Pseudomonas, which function as nitrogen and phosphorus removers, were present in water. Source Tracker and environmental correlation analyses showed that changes in the gut were associated with eutrophication indicators (total nitrogen, total phosphorus, ammonia nitrogen) and changes in environmental microorganisms (in water and sediment). The results of the community-building mechanism analysis show that stochastic processes determine the community-building directions of environmental and gut microorganisms. These findings will help us to understand the microbiota characteristics of shrimp ponds under greenhouse farming conditions, and the complex interactions between the shrimp gut and the environmental microbiota and environmental variables, as well as revealing the changing rules of the gut microbiota. Full article
(This article belongs to the Special Issue Aquaculture Ecology and the Environmental Microbiome)
Show Figures

Figure 1

11 pages, 4750 KiB  
Article
Hauling Snow Crab Traps in Eastern Canada: A Study Documenting Tension in Ropes
by Genevieve Peck, Tomas Araya-Schmidt and Paul D. Winger
Fishes 2024, 9(5), 154; https://doi.org/10.3390/fishes9050154 - 26 Apr 2024
Viewed by 558
Abstract
Entanglement in commercial fishing gear is one of the main factors inhibiting the recovery of critically endangered North Atlantic right whales. Installing low-breaking-strength (LBS) components in the buoy lines and main lines of stationary fishing gear may be a viable solution for some [...] Read more.
Entanglement in commercial fishing gear is one of the main factors inhibiting the recovery of critically endangered North Atlantic right whales. Installing low-breaking-strength (LBS) components in the buoy lines and main lines of stationary fishing gear may be a viable solution for some fisheries. But is it an effective solution for deep-water trap fisheries? This study quantified in-line rope tensions observed during fishing operations for snow crab (Chionoecetes opilio) in Newfoundland and Labrador, Canada. We conducted a controlled fishing experiment in which we documented the loads experienced while hauling fleets of traps. The results showed that several factors contributed to the loads observed, including the components of the traps, the presence of crabs, and environmental conditions such as wind direction and wave height. According to the statistical models, the maximum tension from the estimated marginal means was 477.53 kgf in the buoy line and 987.99 kgf in the main line for the baited hauls, which exceeds the safe working load (154 kgf) of the proposed low-breaking-strength components. Our results suggest that LBS components are not a viable solution for this deep-water fishery. Full article
(This article belongs to the Special Issue Advances in Crab Fisheries)
Show Figures

Figure 1

12 pages, 1253 KiB  
Article
Population Structure Using Mitochondrial DNA for the Conservation of Liobagrus geumgangensis (Siluriformes: Amblycipitidae), an Endemic Freshwater Fish in Korea
by Kang-Rae Kim, Mu-Sung Sung and Keun-Sik Kim
Fishes 2024, 9(5), 153; https://doi.org/10.3390/fishes9050153 - 25 Apr 2024
Viewed by 344
Abstract
Liobagrus geumgangensis is a novel Korean fish species endemic to the Geumgang and Mangyeonggang River basins on the Korean Peninsula. During a survey of L. geumgangensis, the discovery of Liobagrus mediadiposalis as a potential threat prompted an investigation into L. geumgangensis genetic [...] Read more.
Liobagrus geumgangensis is a novel Korean fish species endemic to the Geumgang and Mangyeonggang River basins on the Korean Peninsula. During a survey of L. geumgangensis, the discovery of Liobagrus mediadiposalis as a potential threat prompted an investigation into L. geumgangensis genetic diversity and structure. Three populations of L. geumagangensis and one population of L. mediadiposalis were investigated using a 1024-bp sequence in the cytb region of mitochondrial DNA. The Mangyeonggang River of L. geumagangensis displayed the lowest haplotype diversity (Hd) within a range of 0.000–0.337, with one to two haplotypes (h). The Jecheon region of the Geumgang River for L. geumagangensis population had the highest nucleotide diversity (π) and was within the range of 0.00000–0.00066. The h of L. mediadiposalis population was 3, the range of Hd was 0.292, and π was 0.00231. Tajima’s D (D) and Fu’s Fs (F) were negative and non-significant in the LgGJ population. The genetic structure of L. geumgangensis had no shared haplotypes among the three populations. The discovery of L. mediadiposalis in the Geumgang River suggests the necessity of non-habitat conservation and population management of fish farms to conserve L. geumgangensis. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

13 pages, 2421 KiB  
Article
Age, Growth, and Otolith Morphometrics of Trachinus draco (L., 1758) and Trachinus radiatus (Cuvier, 1829) in the Eastern Mediterranean
by Vasiliki Nikiforidou, Chryssi Mytilineou, Athanasios Alexandropoulos and Aikaterini Anastasopoulou
Fishes 2024, 9(5), 152; https://doi.org/10.3390/fishes9050152 - 25 Apr 2024
Viewed by 872
Abstract
Trachinus draco and Trachinus radiatus are two bycatch species of low commercial value and no sufficient knowledge on their biological features. In the present study, the weight–length relationship, age, growth, and ten otolith morphometric variables of these species were investigated in the southwestern [...] Read more.
Trachinus draco and Trachinus radiatus are two bycatch species of low commercial value and no sufficient knowledge on their biological features. In the present study, the weight–length relationship, age, growth, and ten otolith morphometric variables of these species were investigated in the southwestern Aegean Sea for the first time. Positive allometric and isometric growth in the weight were defined in T. draco and T. radiatus. The weight–length relationship was described by the parameters α = 0.002415 and b = 3.35745 in T. draco and α = 0.007582 and b = 3.09452 in T. radiatus. The von Bertalanffy growth function parameters were L = 44.51 cm, k = 0.15 year−1, and t0 = −1.31 years for T. draco and L = 58.47 cm, k = 0.16 year−1, and t0 = −0.78 years for T. radiatus. Ten otolith variables (radius, length, width, area, perimeter, roundness, circularity, form factor, rectangularity, and ellipticity) showed a significant relationship with size for both species, except the ellipticity in T. radiatus. The mean values of all the otolith variables were higher in T. radiatus than in T. draco. The otolith of T. radiatus was found to become more rectangular with size as compared to the otolith of T. radiatus. The results of this work can support further research on the behavioral and ecological features of the two species. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

14 pages, 4058 KiB  
Article
Triple Attention Mechanism with YOLOv5s for Fish Detection
by Wei Long, Yawen Wang, Lingxi Hu, Jintao Zhang, Chen Zhang, Linhua Jiang and Lihong Xu
Fishes 2024, 9(5), 151; https://doi.org/10.3390/fishes9050151 - 23 Apr 2024
Viewed by 415
Abstract
Traditional fish farming methods suffer from backward production, low efficiency, low yield, and environmental pollution. As a result of thorough research using deep learning technology, the industrial aquaculture model has experienced gradual maturation. A variety of complex factors makes it difficult to extract [...] Read more.
Traditional fish farming methods suffer from backward production, low efficiency, low yield, and environmental pollution. As a result of thorough research using deep learning technology, the industrial aquaculture model has experienced gradual maturation. A variety of complex factors makes it difficult to extract effective features, which results in less-than-good model performance. This paper proposes a fish detection method that combines a triple attention mechanism with a You Only Look Once (TAM-YOLO)model. In order to enhance the speed of model training, the process of data encapsulation incorporates positive sample matching. An exponential moving average (EMA) is incorporated into the training process to make the model more robust, and coordinate attention (CA) and a convolutional block attention module are integrated into the YOLOv5s backbone to enhance the feature extraction of channels and spatial locations. The extracted feature maps are input to the PANet path aggregation network, and the underlying information is stacked with the feature maps. The method improves the detection accuracy of underwater blurred and distorted fish images. Experimental results show that the proposed TAM-YOLO model outperforms YOLOv3, YOLOv4, YOLOv5s, YOLOv5m, and SSD, with a mAP value of 95.88%, thus providing a new strategy for fish detection. Full article
Show Figures

Figure 1

12 pages, 2039 KiB  
Article
Enhancing Indoor Culture of Weather Loach (Misgurnus anguillicaudatus) and Caipira Lettuce (Lactuca sativa) in a Decoupled FLOCponics System
by Junseong Park, Ju-ae Hwang, Jongryeol Choe, Donggil Lee and Hyeongsu Kim
Fishes 2024, 9(5), 150; https://doi.org/10.3390/fishes9050150 - 23 Apr 2024
Viewed by 307
Abstract
Interest in aquaponics (AP) is increasing due to its ability to minimize sewage and maximize feed efficiency in fish farming. However, owing to limitations of intensive cultures and a lack of nutrients such as NO3 for growing crops, AP requires the use [...] Read more.
Interest in aquaponics (AP) is increasing due to its ability to minimize sewage and maximize feed efficiency in fish farming. However, owing to limitations of intensive cultures and a lack of nutrients such as NO3 for growing crops, AP requires the use of artificial nutrients. Therefore, novel approaches are required to develop AP-intensive culturing methods. An AP system based on biofloc technology (BFT) called FLOCponics (FP) has been recommended. Here, the productivity of the weather loach (Misgurnus anguillicaudatus) in the FP system, BFT system, and flow-through systems (FTSs), as well as these systems’ effect on Caipira lettuce (Lactuca sativa) growth, was analyzed. To compare crop productivity, a hydroponic (HP) bed was installed. The growth rate of M. anguillicaudatus showed significant differences, at 51.1 ± 3.69% in the FP system, followed by 24.0 ± 4.16% in the BFT system and −14.3 ± 1.4% in the FTS. Its survival rates were better in the FP system (91.1 ± 2.64%) than in the BFT system (82.1 ± 10.98%) or the FTS (66.8 ± 2.75%) (p < 0.05). Total ammonia nitrogen and NO2-N concentrations were stabilized in every plot during the experimental period. However, the NO3-N concentration continuously increased in the BFT system but decreased in the FP system and was maintained. The shoot weight of the Caipira lettuce was 163.6 ± 8.65 g in the FP system and 149.6 ± 9.05 g in the HP system. In conclusion, FP system can provide a large amount of nutrients and improve the growth performance of both fish and crops in the FP system. Full article
(This article belongs to the Special Issue Advances in Sustainable Aquaculture Production Systems)
Show Figures

Figure 1

16 pages, 4546 KiB  
Article
A Fish-Based Tool for the Quality Assessment of Portuguese Large Rivers
by António Tovar Faro, Maria Teresa Ferreira and João Manuel Oliveira
Fishes 2024, 9(5), 149; https://doi.org/10.3390/fishes9050149 - 23 Apr 2024
Viewed by 482
Abstract
Multimetric indices play a pivotal role in assessing river ecological quality, aligning with the European Water Framework Directive (EU WFD) requirements. However, indices developed specifically for large rivers are uncommon. Our objective was to develop a fish-based tool specifically tailored to assess the [...] Read more.
Multimetric indices play a pivotal role in assessing river ecological quality, aligning with the European Water Framework Directive (EU WFD) requirements. However, indices developed specifically for large rivers are uncommon. Our objective was to develop a fish-based tool specifically tailored to assess the ecological quality in Portuguese large rivers. Data were collected from seven sites in each of three Portuguese large rivers (Minho, Guadiana, and Tagus). Each site was classified using an environmental disturbance score, combining different pressure types, such as water chemistry, land use, and hydromorphological alterations. The Fish-based Multimetric Index for Portuguese Large Rivers (F-MMIP-LR) comprises four metrics: % native lithophilic individuals; % alien individuals; % migrant individuals; and % freshwater native individuals, representing compositional, reproductive, and migratory guilds. The index showed good performance in separating least- and most-disturbed sites. Least-disturbed sites were rated ‘high’ or ‘good’ by F-MMIP-LR, contrasting with no such classification for most-disturbed sites, highlighting index robustness. The three rivers presented a wide range of F-MMIP-LR values across the gradient of ‘bad’ to ‘high’, indicating that, on a large spatial extent, the biological condition was substantially altered. The F-MMIP-LR provides vital information for managers and decision-makers, guiding restoration efforts and strengthening conservation initiatives in line with the WFD. Full article
(This article belongs to the Special Issue Biomonitoring and Conservation of Freshwater & Marine Fishes)
Show Figures

Figure 1

Previous Issue
Back to TopTop