Previous Issue
Volume 10, May
 
 

J. Fungi, Volume 10, Issue 6 (June 2024) – 55 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 1889 KiB  
Communication
Comprehensive Characterization of Tuber maculatum, New in Uruguay: Morphological, Molecular, and Aromatic Analyses
by Francisco Kuhar, Eva Tejedor-Calvo, Alejandro Sequeira, David Pelissero, Mariana Cosse, Domizia Donnini and Eduardo Nouhra
J. Fungi 2024, 10(6), 421; https://doi.org/10.3390/jof10060421 (registering DOI) - 14 Jun 2024
Abstract
Although only a few species of Tuber account for the major truffle sales volume, many species that are not considered delicacies are finding their way to the market, especially in regions where the traditionally appreciated ones do not occur. This is the case [...] Read more.
Although only a few species of Tuber account for the major truffle sales volume, many species that are not considered delicacies are finding their way to the market, especially in regions where the traditionally appreciated ones do not occur. This is the case for whitish truffles. Specimens of whitish truffles were collected in pecan (Carya illinoinensis) orchards in Uruguay in October 2021. Morphological and molecular methods were used to characterize and assess their identity as Tuber maculatum Vittad. An SPME extraction of volatile compounds and GC–MS analyses were performed to characterize the aromatic profile of these specimens and evaluate their potential applications. Among the 60 VOCs detected, 3-octenone (mushroom odor), 3-octanol (moss, nut, mushroom odor), and 2H-pyran-2-one (no odor), followed by octen-1-ol-acetate (no odor) and 2-undecanone (orange, fresh, green odor) were the major compounds in T. maculatum fruiting bodies. The attributes of exotic edible mushrooms of commercial value in the region are highlighted. In particular, this work emphasizes the characteristics of truffles as a byproduct of pecan cultivation. Full article
(This article belongs to the Special Issue New Perspectives on Tuber Fungi)
Show Figures

Figure 1

17 pages, 6302 KiB  
Article
Photoreactivation Activities of Rad5, Rad16A and Rad16B Help Beauveria bassiana to Recover from Solar Ultraviolet Damage
by Xin-Cheng Luo, Lei Yu, Si-Yuan Xu, Sheng-Hua Ying and Ming-Guang Feng
J. Fungi 2024, 10(6), 420; https://doi.org/10.3390/jof10060420 - 13 Jun 2024
Viewed by 118
Abstract
In budding yeast, Rad5 and Rad7-Rad16 play respective roles in the error-free post-replication repair and nucleotide excision repair of ultraviolet-induced DNA damage; however, their homologs have not yet been studied in non-yeast fungi. In the fungus Beauveria bassiana, a deficiency in the [...] Read more.
In budding yeast, Rad5 and Rad7-Rad16 play respective roles in the error-free post-replication repair and nucleotide excision repair of ultraviolet-induced DNA damage; however, their homologs have not yet been studied in non-yeast fungi. In the fungus Beauveria bassiana, a deficiency in the Rad7 homolog, Rad5 ortholog and two Rad16 paralogs (Rad16A/B) instituted an ability to help the insect-pathogenic fungus to recover from solar UVB damage through photoreactivation. The fungal lifecycle-related phenotypes were not altered in the absence of rad5, rad16A or rad16B, while severe defects in growth and conidiation were caused by the double deletion of rad16A and rad16B. Compared with the wild-type and complemented strains, the mutants showed differentially reduced activities regarding the resilience of UVB-impaired conidia at 25 °C through a 12-h incubation in a regime of visible light plus dark (L/D 3:9 h or 5:7 h for photoreactivation) or of full darkness (dark reactivation) mimicking a natural nighttime. The estimates of the median lethal UVB dose LD50 from the dark and L/D treatments revealed greater activities of Rad5 and Rad16B than of Rad16A and additive activities of Rad16A and Rad16B in either NER-dependent dark reactivation or photorepair-dependent photoreactivation. However, their dark reactivation activities were limited to recovering low UVB dose-impaired conidia but were unable to recover conidia impaired by sublethal and lethal UVB doses as did their photoreactivation activities at L/D 3:9 or 5:7, unless the night/dark time was doubled or further prolonged. Therefore, the anti-UV effects of Rad5, Rad16A and Rad16B in B. bassiana depend primarily on photoreactivation and are mechanistically distinct from those for their yeast homologs. Full article
Show Figures

Figure 1

25 pages, 1465 KiB  
Article
Microbial-Based Biofungicides Mitigate the Damage Caused by Fusarium oxysporum f. sp. cubense Race 1 and Improve the Physiological Performance in Banana
by Luisa Fernanda Izquierdo-García, Sandra Lorena Carmona-Gutiérrez, Carlos Andrés Moreno-Velandia, Andrea del Pilar Villarreal-Navarrete, Diana Marcela Burbano-David, Ruth Yesenia Quiroga-Mateus, Magda Rocío Gómez-Marroquín, Gustavo Adolfo Rodríguez-Yzquierdo and Mónica Betancourt-Vásquez
J. Fungi 2024, 10(6), 419; https://doi.org/10.3390/jof10060419 - 12 Jun 2024
Viewed by 235
Abstract
Fusarium wilt of banana (FWB) is the most limiting disease in this crop. The phytosanitary emergency caused by FWB since 2019 in Colombia has required the development of ecofriendly control methods. The aim of this study was to test the effectiveness of microbial-based [...] Read more.
Fusarium wilt of banana (FWB) is the most limiting disease in this crop. The phytosanitary emergency caused by FWB since 2019 in Colombia has required the development of ecofriendly control methods. The aim of this study was to test the effectiveness of microbial-based biofungicides against FWB caused by Fusarium oxysporum f. sp. cubense race 1 (Foc R1) and correlate such effect with plant physiological parameters. Five Trichoderma (T1 to T4 and T9) and four Bacillus (T5 to T8)-based biofungicides were evaluated in pot experiments. In vitro, dual confrontation tests were also carried out to test whether the in vitro effects on Foc growth were consistent with the in vivo effects. While Trichoderma-based T3, T4, and T9, and Bacillus-based T8, significantly reduced the growth of Foc R1 in vitro, Trichoderma-based T1, T3, T4, and T9 temporarily reduced the Foc population in the soil. However, the incidence progress of FWB was significantly reduced by Bacterial-based T7 (74% efficacy) and Trichoderma-based T2 (50% efficacy). The molecular analysis showed that T7 prevented the inner tissue colonization by Foc R1 in 80% of inoculated plants. The T2, T4, T7, and T9 treatments mitigated the negative effects caused by Foc R1 on plant physiology and growth. Our data allowed us to identify three promising treatments to control FWB, reducing the progress of the disease, delaying the colonization of inner tissue, and mitigating physiological damages. Further studies should be addressed to determine the modes of action of the biocontrol agents against Foc and validate the utilization in the field. Full article
(This article belongs to the Special Issue Plant Fungal Diseases and Crop Protection)
22 pages, 2797 KiB  
Review
Bioprocess of Gibberellic Acid by Fusarium fujikuroi: The Challenge of Regulation, Raw Materials, and Product Yields
by Aranza Hernández Rodríguez, Adrián Díaz Pacheco, Shirlley Elizabeth Martínez Tolibia, Yazmin Melendez Xicohtencatl, Sulem Yali Granados Balbuena and Víctor Eric López y López
J. Fungi 2024, 10(6), 418; https://doi.org/10.3390/jof10060418 - 12 Jun 2024
Viewed by 292
Abstract
Gibberellic acid (GA3) is a tetracyclic diterpenoid carboxylic acid synthesized by the secondary metabolism of Fusarium fujikuroi. This phytohormone is widely studied due to the advantages it offers as a plant growth regulator, such as growth stimulation, senescence delay, flowering [...] Read more.
Gibberellic acid (GA3) is a tetracyclic diterpenoid carboxylic acid synthesized by the secondary metabolism of Fusarium fujikuroi. This phytohormone is widely studied due to the advantages it offers as a plant growth regulator, such as growth stimulation, senescence delay, flowering induction, increased fruit size, and defense against abiotic or biotic stress, which improve the quality and yield of crops. Therefore, GA3 has been considered as an innovative strategy to improve agricultural production. However, the yields obtained at large scale are insufficient for the current market demand. This low productivity is attributed to the lack of adequate parameters to optimize the fermentation process, as well as the complexity of its regulation. Therefore, this article describes the latest advances for potentializing the GA3 production process, including an analysis of its origins from crops, the benefits of its application, the related biosynthetic metabolism, the maximum yields achieved from production processes, and their association with genetic engineering techniques for GA3 producers. This work provides a new perspective on the critical points of the production process, in order to overcome the limits surrounding this modern line of bioengineering. Full article
(This article belongs to the Special Issue Recent Advances in Fungal Secondary Metabolism, 2nd Edition)
Show Figures

Figure 1

18 pages, 3024 KiB  
Article
Plant Growth Promotion and Biological Control against Rhizoctonia solani in Thai Local Rice Variety “Chor Khing” Using Trichoderma breve Z2-03
by Warin Intana, Nakarin Suwannarach, Jaturong Kumla, Prisana Wonglom and Anurag Sunpapao
J. Fungi 2024, 10(6), 417; https://doi.org/10.3390/jof10060417 - 11 Jun 2024
Viewed by 216
Abstract
Several strains of Trichoderma are applied in the field to control plant diseases due to their capacity to suppress fungal pathogens and control plant diseases. Some Trichoderma strains also are able to promote plant growth through the production of indole-3-acetic acid (IAA). In [...] Read more.
Several strains of Trichoderma are applied in the field to control plant diseases due to their capacity to suppress fungal pathogens and control plant diseases. Some Trichoderma strains also are able to promote plant growth through the production of indole-3-acetic acid (IAA). In southern Thailand, the local rice variety “Chor Khing” is mainly cultivated in the Songkhla province; it is characterized by slow growth and is susceptible to sheath blight caused by Rhizoctonia solani. Therefore, this research aimed to screen Trichoderma species with the ability to promote plant growth in this rice variety and enact biological control against R. solani. A total of 21 Trichoderma isolates were screened for indole compound production using the Salkowski reagent. The Z2-03 isolate reacted positively to the Salkowski reagent, indicating the production of the indole compound. High-performance liquid chromatography (HPCL) confirmed that Z2-03 produced IAA at 35.58 ± 7.60 μg/mL. The cell-free culture filtrate of the potato dextrose broth (CF) of Z2-03 induced rice germination in rice seeds, yielding root and shoot lengths in cell-free CF-treated rice that were significantly higher than those of the control (distilled water and culture broth alone). Furthermore, inoculation with Trichoderma conidia promoted rice growth and induced a defense response against R. solani during the seedling stage. Trichoderma Z2-03 displayed an antifungal capacity against R. solani, achieving 74.17% inhibition (as measured through dual culture assay) and the production of siderophores on the CAS medium. The pot experiment revealed that inoculation with the Trichoderma sp. Z2-03 conidial suspension increased the number of tillers and the plant height in the “Chor Khing” rice variety, and suppressed the percentage of disease incidence (PDI). The Trichoderma isolate Z2-03 was identified, based on the morphology and molecular properties of ITS, translation elongation factor 1-alpha (tef1-α), and RNA polymerase 2 (rpb2), as Trichoderma breve Z2-03. Our results reveal the ability of T. breve Z2-03 to act as a plant growth promoter, enhancing growth and development in the “Chor Khing” rice variety, as well as a biological control agent through its competition and defense induction mechanism in this rice variety. Full article
(This article belongs to the Special Issue Soil Fungi and Their Role in Plant Growth)
15 pages, 2663 KiB  
Article
Natural Prevalence, Molecular Characteristics, and Biological Activity of Metarhizium rileyi (Farlow) Isolated from Spodoptera frugiperda (J. E. Smith) Larvae in Mexico
by Yordanys Ramos, Samuel Pineda-Guillermo, Patricia Tamez-Guerra, Alonso Alberto Orozco-Flores, José Isaac Figueroa de la Rosa, Selene Ramos-Ortiz, Juan Manuel Chavarrieta-Yáñez and Ana Mabel Martínez-Castillo
J. Fungi 2024, 10(6), 416; https://doi.org/10.3390/jof10060416 - 8 Jun 2024
Viewed by 297
Abstract
Entomopathogenic fungi have been considered potential biological control agents against the fall armyworm Spodoptera frugiperda (J. E. Smith), the world’s most important pest of maize. In this study, we evaluated the natural infection, molecular characteristics, and biological activity of Metarhizium rileyi (Farlow) isolated [...] Read more.
Entomopathogenic fungi have been considered potential biological control agents against the fall armyworm Spodoptera frugiperda (J. E. Smith), the world’s most important pest of maize. In this study, we evaluated the natural infection, molecular characteristics, and biological activity of Metarhizium rileyi (Farlow) isolated from S. frugiperda larvae of this insect, collected from maize crops in five Mexican locations. Natural infection ranged from 23% to 90% across all locations analyzed. Twenty-four isolates were evaluated on S. frugiperda second instars at a concentration of 1.0 × 108 conidia/mL, causing 70% to 98.7% mortality and 60.5% to 98.7% sporulation. Isolates T9-21, Z30-21, PP48-21, and L8-22 were selected to determine their phylogenetic relationships by β-tubulin gene analysis and to compare median lethal concentration (CL50), median lethal time (LT50), and larval survival. These isolates were grouped into three clades. The T9-21, PP48-21, and J10-22 isolates were closely related (clade A), but phylogenetically distant from Z30-21 (clade B) and L8-22 (clade C) isolates. These genetic differences were not always reflected in their pathogenicity characteristics since no differences were observed among the LC50 values. Furthermore, isolates T9-21, J10-22, and L8-22 were the fastest to kill S. frugiperda larvae, causing lower survival rates. We conclude that native M. rileyi isolates represent an important alternative for the biocontrol of S. frugiperda. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
22 pages, 14933 KiB  
Article
The Performance and Evolutionary Mechanism of Ganoderma lucidum in Enhancing Selenite Tolerance and Bioaccumulation
by Mengmeng Xu, Qi Meng, Song Zhu, Ruipeng Yu, Lei Chen, Guiyang Shi, Ka-Hing Wong, Daming Fan and Zhongyang Ding
J. Fungi 2024, 10(6), 415; https://doi.org/10.3390/jof10060415 - 8 Jun 2024
Viewed by 354
Abstract
Background: Selenium (Se) pollution poses serious threats to terrestrial ecosystems. Mushrooms are important sources of Se with the potential for bioremediation. Pre-eminent Se resources must possess the ability to tolerate high levels of Se. To obtain Se-accumulating fungi, we isolated selenite-tolerance-enhanced Ganoderma lucidum [...] Read more.
Background: Selenium (Se) pollution poses serious threats to terrestrial ecosystems. Mushrooms are important sources of Se with the potential for bioremediation. Pre-eminent Se resources must possess the ability to tolerate high levels of Se. To obtain Se-accumulating fungi, we isolated selenite-tolerance-enhanced Ganoderma lucidum JNUSE-200 through adaptive evolution. Methods: The molecular mechanism responsible for selenite tolerance and accumulation was explored in G. lucidum JNUSE-200 by comparing it with the original strain, G. lucidum CGMCC 5.26, using a combination of physiological and transcriptomic approaches. Results: G. lucidum JNUSE-200 demonstrated tolerance to 200 mg/kg selenite in liquid culture and exhibited normal growth, whereas G. lucidum CGMCC 5.26 experienced reduced growth, red coloration, and an unpleasant odor as a result of exposure to selenite at the same concentration. In this study, G. lucidum JNUSE-200 developed a triple defense mechanism against high-level selenite toxicity, and the key genes responsible for improved selenite tolerance were identified. Conclusions: The present study offers novel insights into the molecular responses of fungi towards selenite, providing theoretical guidance for the breeding and cultivation of Se-accumulating varieties. Moreover, it significantly enhances the capacity of the bio-manufacturing industry and contributes to the development of beneficial applications in environmental biotechnology through fungal selenite transformation bioprocesses. Full article
(This article belongs to the Special Issue Edible and Medicinal Macrofungi, 3rd Edition)
Show Figures

Figure 1

74 pages, 1802 KiB  
Review
An In-Depth Study of Phytopathogenic Ganoderma: Pathogenicity, Advanced Detection Techniques, Control Strategies, and Sustainable Management
by Samantha C. Karunarathna, Nimesha M. Patabendige, Wenhua Lu, Suhail Asad and Kalani K. Hapuarachchi
J. Fungi 2024, 10(6), 414; https://doi.org/10.3390/jof10060414 - 7 Jun 2024
Viewed by 255
Abstract
Phytopathogenic Ganoderma species pose a significant threat to global plant health, resulting in estimated annual economic losses exceeding USD (US Dollars) 68 billion in the agriculture and forestry sectors worldwide. To combat this pervasive menace effectively, a comprehensive understanding of the biology, ecology, [...] Read more.
Phytopathogenic Ganoderma species pose a significant threat to global plant health, resulting in estimated annual economic losses exceeding USD (US Dollars) 68 billion in the agriculture and forestry sectors worldwide. To combat this pervasive menace effectively, a comprehensive understanding of the biology, ecology, and plant infection mechanisms of these pathogens is imperative. This comprehensive review critically examines various aspects of Ganoderma spp., including their intricate life cycle, their disease mechanisms, and the multifaceted environmental factors influencing their spread. Recent studies have quantified the economic impact of Ganoderma infections, revealing staggering yield losses ranging from 20% to 80% across various crops. In particular, oil palm plantations suffer devastating losses, with an estimated annual reduction in yield exceeding 50 million metric tons. Moreover, this review elucidates the dynamic interactions between Ganoderma and host plants, delineating the pathogen’s colonization strategies and its elicitation of intricate plant defense responses. This comprehensive analysis underscores the imperative for adopting an integrated approach to Ganoderma disease management. By synergistically harnessing cultural practices, biological control, and chemical treatments and by deploying resistant plant varieties, substantial strides can be made in mitigating Ganoderma infestations. Furthermore, a collaborative effort involving scientists, breeders, and growers is paramount in the development and implementation of sustainable strategies against this pernicious plant pathogen. Through rigorous scientific inquiry and evidence-based practices, we can strive towards safeguarding global plant health and mitigating the dire economic consequences inflicted by Ganoderma infections. Full article
15 pages, 4715 KiB  
Article
Active Prevalence of Fusarium falciforme and F. acutatum Causing Basal Rot of Onion in Maharashtra, India
by Ram Dutta, Krishnappa Jayalakshmi, Auji Radhakrishna, Satish Kumar and Vijay Mahajan
J. Fungi 2024, 10(6), 413; https://doi.org/10.3390/jof10060413 - 7 Jun 2024
Viewed by 510
Abstract
Over the past decade, there have been accumulating reports from researchers, farmers, and field extension personnel on the increasing incidence and spread of onion basal rot in India. Onion basal rot disease is mainly caused by Fusarium spp. This study aimed to validate [...] Read more.
Over the past decade, there have been accumulating reports from researchers, farmers, and field extension personnel on the increasing incidence and spread of onion basal rot in India. Onion basal rot disease is mainly caused by Fusarium spp. This study aimed to validate the information on the active prevalence of F. falciforme and F. acutatum causing Fusarium basal rot (FBR) in Maharashtra. A survey was conducted, and the infected plants/bulbs were collected from fields of 38 locations comprising five districts of Maharashtra, namely, Nashik, Aurangabad, Solapur, Ahmednagar, and Pune, in 2023. This disease was prevalent in high-moisture and high-oil-temperature conditions and the symptoms were observed in most of the fields, with the FBR incidence ranging from 17 to 41%. The available data of basal rot incidence from 1998 to 2022 were analyzed, based on which the prevalence of FBR was 11–50%. Tissue from the infected samples of onion bulbs was used for the isolation. The identification was performed based on colony morphology and microscopic features and confirmed through molecular markers using ITS and Tef-1α gene primers. Of the ten Fusarium isolates collected from selected locations, six species were confirmed as F. acutatum and four as F. falciforme. The pathogenicity tests performed with onion seedlings and bulbs under moist conditions proved that both F. acutatum and F. falciforme independently could cause basal rot disease symptoms but with different degrees of virulence. Koch’s postulates were confirmed by reisolating the same pathogens from the infected plants. Thus, the active prevalence of FBR was confirmed in Maharashtra and also, to the best of our knowledge, this is the first report of F. falciforme and F. acutatum causing basal rot of onion independently in Maharashtra, India. Full article
(This article belongs to the Special Issue Management of Postharvest Fungal Diseases of Fruits and Vegetables)
Show Figures

Figure 1

15 pages, 2780 KiB  
Article
Investigation of the Microbial Diversity in the Oryza sativa Cultivation Environment and Artificial Transplantation of Microorganisms to Improve Sustainable Mycobiota
by Yeu-Ching Shi, Yu-Juan Zheng, Yi-Ching Lin, Cheng-Hao Huang, Tang-Long Shen, Yu-Chia Hsu and Bao-Hong Lee
J. Fungi 2024, 10(6), 412; https://doi.org/10.3390/jof10060412 - 6 Jun 2024
Viewed by 446
Abstract
Rice straw is not easy to decompose, it takes a long time to compost, and the anaerobic bacteria involved in the decomposition process produce a large amount of carbon dioxide (CO2), indicating that applications for rice straw need to be developed. [...] Read more.
Rice straw is not easy to decompose, it takes a long time to compost, and the anaerobic bacteria involved in the decomposition process produce a large amount of carbon dioxide (CO2), indicating that applications for rice straw need to be developed. Recycling rice straw in agricultural crops is an opportunity to increase the sustainability of grain production. Several studies have shown that the probiotic population gradually decreases in the soil, leading to an increased risk of plant diseases and decreased biomass yield. Because the microorganisms in the soil are related to the growth of plants, when the soil microbial community is imbalanced it seriously affects plant growth. We investigated the feasibility of using composted rice stalks to artificially cultivate microorganisms obtained from the Oryza sativa-planted environment for analyzing the mycobiota and evaluating applications for sustainable agriculture. Microbes obtained from the water-submerged part (group-A) and soil part (group-B) of O. sativa were cultured in an artificial medium, and the microbial diversity was analyzed with internal transcribed spacer sequencing. Paddy field soil was mixed with fermented paddy straw compost, and the microbes obtained from the soil used for O. sativa planting were designated as group-C. The paddy fields transplanted with artificially cultured microbes from group-A were designated as group-D and those from group-B were designated as group-E. We found that fungi and yeasts can be cultured in groups-A and -B. These microbes altered the soil mycobiota in the paddy fields after transplantation in groups-D and -E compared to groups-A and -B. Development in O. sativa post treatment with microbial transplantation was observed in the groups-D and -E compared to group-C. These results showed that artificially cultured microorganisms could be efficiently transplanted into the soil and improve the mycobiota. Phytohormones were involved in improving O. sativa growth and rice yield via the submerged part-derived microbial medium (group-D) or the soil part-derived microbial medium (group-E) treatments. Collectively, these fungi and yeasts may be applied in microbial transplantation via rice straw fermentation to repair soil mycobiota imbalances, facilitating plant growth and sustainable agriculture. These fungi and yeasts may be applied in microbial transplantation to repair soil mycobiota imbalances and sustainable agriculture. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

18 pages, 2344 KiB  
Review
Applications of the Methylotrophic Yeast Komagataella phaffii in the Context of Modern Biotechnology
by Lidia Maria Pepe de Moraes, Henrique Fetzner Marques, Viviane Castelo Branco Reis, Cintia Marques Coelho, Matheus de Castro Leitão, Alexsandro Sobreira Galdino, Thais Paiva Porto de Souza, Luiza Cesca Piva, Ana Laura Alfonso Perez, Débora Trichez, João Ricardo Moreira de Almeida, Janice Lisboa De Marco and Fernando Araripe Gonçalves Torres
J. Fungi 2024, 10(6), 411; https://doi.org/10.3390/jof10060411 - 6 Jun 2024
Viewed by 598
Abstract
Komagataella phaffii (formerly Pichia pastoris) is a methylotrophic yeast widely used in laboratories around the world to produce recombinant proteins. Given its advantageous features, it has also gained much interest in the context of modern biotechnology. In this review, we present the [...] Read more.
Komagataella phaffii (formerly Pichia pastoris) is a methylotrophic yeast widely used in laboratories around the world to produce recombinant proteins. Given its advantageous features, it has also gained much interest in the context of modern biotechnology. In this review, we present the utilization of K. phaffii as a platform to produce several products of economic interest such as biopharmaceuticals, renewable chemicals, fuels, biomaterials, and food/feed products. Finally, we present synthetic biology approaches currently used for strain engineering, aiming at the production of new bioproducts. Full article
(This article belongs to the Special Issue New Perspectives on Industrial Yeasts)
Show Figures

Figure 1

19 pages, 5433 KiB  
Article
Biological Control of Root Rot of Strawberry by Bacillus amyloliquefaciens Strains CMS5 and CMR12
by Ruixian Yang, Ping Liu, Wenyu Ye, Yuquan Chen, Daowei Wei, Cuicui Qiao, Bingyi Zhou and Jingyao Xiao
J. Fungi 2024, 10(6), 410; https://doi.org/10.3390/jof10060410 - 6 Jun 2024
Viewed by 295
Abstract
Strawberry root rot caused by Fusarium solani is one of the main diseases of strawberries and significantly impacts the yield and quality of strawberry fruit. Biological control is becoming an alternative method for the control of plant diseases to replace or decrease the [...] Read more.
Strawberry root rot caused by Fusarium solani is one of the main diseases of strawberries and significantly impacts the yield and quality of strawberry fruit. Biological control is becoming an alternative method for the control of plant diseases to replace or decrease the application of traditional chemical fungicides. To obtain antagonistic bacteria with a high biocontrol effect on strawberry root rot, over 72 rhizosphere bacteria were isolated from the strawberry rhizosphere soil and screened for their antifungal activity against F. solani by dual culture assay. Among them, strains CMS5 and CMR12 showed the strongest inhibitory activity against F. solani (inhibition rate 57.78% and 65.93%, respectively) and exhibited broad-spectrum antifungal activity. According to the phylogenetic tree based on 16S rDNA and gyrB genes, CMS5 and CMR12 were identified as Bacillus amyloliquefaciens. Lipopeptide genes involved in surfactin, iturin, and fengycin biosynthesis were detected in the DNA genomes of CMS5 and CMR12 by PCR amplification. The genes related to the three major lipopeptide metabolites existed in the DNA genome of strains CMS5 and CMR12, and the lipopeptides could inhibit the mycelial growth of F. solani and resulted in distorted hyphae. The inhibitory rates of lipopeptides of CMS5 and CMR12 on the spore germination of F. solani were 61.00% and 42.67%, respectively. The plant-growth-promoting (PGP) traits in vitro screening showed that CMS5 and CMR12 have the ability to fix nitrogen and secreted indoleacetic acid (IAA). In the potting test, the control efficiency of CMS5, CMR12 and CMS5+CMR12 against strawberry root rot were 65.3%, 67.94% and 88.00%, respectively. Furthermore, CMS5 and CMR12 enhanced the resistance of strawberry to F. solani by increasing the activities of defense enzymes MDA, CAT and SOD. Moreover, CMS5 and CMR12 significantly promoted the growth of strawberry seedlings such as root length, seedling length and seedling fresh weight. This study revealed that B. amyloliquefaciens CMS5 and CMR12 have high potential to be used as biocontrol agents to control strawberry root rot. Full article
(This article belongs to the Special Issue Plant Fungal Diseases and Crop Protection)
Show Figures

Figure 1

18 pages, 3779 KiB  
Article
The CARD9 Gene in Koalas (Phascolarctos cinereus): Does It Play a Role in the Cryptococcus–Koala Interaction?
by Hannah P. Newton, Damien P. Higgins, Andrea Casteriano, Belinda R. Wright, Mark B. Krockenberger and Luisa H. M. Miranda
J. Fungi 2024, 10(6), 409; https://doi.org/10.3390/jof10060409 - 6 Jun 2024
Viewed by 272
Abstract
Cryptococcus is a genus of fungal pathogens that can infect and cause disease in a range of host species and is particularly prominent in koalas (Phascolarctos cinerus). Like other host species, koalas display a range of outcomes upon exposure to environmental [...] Read more.
Cryptococcus is a genus of fungal pathogens that can infect and cause disease in a range of host species and is particularly prominent in koalas (Phascolarctos cinerus). Like other host species, koalas display a range of outcomes upon exposure to environmental Cryptococcus, from external nasal colonization to asymptomatic invasive infection and, in rare cases, severe clinical disease resulting in death. Host factors contributing to these varied outcomes are poorly understood. Due to their close relationship with eucalypt trees (a key environmental niche for Cryptococcus gattii) and suspected continual exposure to the pathogen, koalas provide a unique opportunity to examine host susceptibility in natural infections. Caspase recruitment domain-containing protein 9 (CARD9) is a key intracellular signaling protein in the fungal innate immune response. Humans with mutations in CARD9 succumb to several different severe and chronic fungal infections. This study is the first to sequence and explore CARD9 variation in multiple koalas using Sanger sequencing. Four CARD9 exons were successfully sequenced in 22 koalas from a New South Wales, Australia population. We found minimal variation between koalas across all four exons, an observation that was also made when CARD9 sequences were compared between koalas and six other species, including humans and mice. Ten single-nucleotide polymorphisms (SNP) were identified in this study and explored in the context of cryptococcal exposure outcomes. While we did not find any significant association with variation in cryptococcal outcomes, we found a high degree of conservation between species at several SNP loci that requires further investigation. The findings from this study lay the groundwork for further investigations of CARD9 and Cryptococcus both in koalas and other species, and highlight several considerations for future studies. Full article
(This article belongs to the Special Issue Cryptococcus Infections and Pathogenesis)
Show Figures

Figure 1

23 pages, 1730 KiB  
Review
Current Perspectives of Antifungal Therapy: A Special Focus on Candida auris
by Arumugam Ganeshkumar, Manickam Muthuselvam, Patricia Michelle Nagai de Lima, Rajendren Rajaram and Juliana Campos Junqueira
J. Fungi 2024, 10(6), 408; https://doi.org/10.3390/jof10060408 - 6 Jun 2024
Viewed by 356
Abstract
Candida auris is an emerging Candida sp. that has rapidly spread all over the world. The evidence regarding its origin and emerging resistance is still unclear. The severe infection caused by this species results in significant mortality and morbidity among the elderly and [...] Read more.
Candida auris is an emerging Candida sp. that has rapidly spread all over the world. The evidence regarding its origin and emerging resistance is still unclear. The severe infection caused by this species results in significant mortality and morbidity among the elderly and immunocompromised individuals. The development of drug resistance is the major factor associated with the therapeutic failure of existing antifungal agents. Previous studies have addressed the antifungal resistance profile and drug discovery for C. auris. However, complete coverage of this information in a single investigation is not yet available. In this review, we have mainly focused on recent developments in therapeutic strategies against C. auris. Based on the available information, several different approaches were discussed, including existing antifungal drugs, chemical compounds, essential oils, natural products, antifungal peptides, immunotherapy, antimicrobial photodynamic therapy, drug repurposing, and drug delivery systems. Among them, synthetic chemicals, natural products, and antifungal peptides are the prime contributors. However, a limited number of resources are available to prove the efficiency of these potential therapies in clinical usage. Therefore, we anticipate that the findings gathered in this review will encourage further in vivo studies and clinical trials. Full article
(This article belongs to the Special Issue Alternative Therapeutic Approaches of Candida Infections, 3rd Edition)
Show Figures

Figure 1

25 pages, 5297 KiB  
Article
A Multiomics Perspective on Plant Cell Wall-Degrading Enzyme Production: Insights from the Unexploited Fungus Trichoderma erinaceum
by Michelle A. de Assis, Jovanderson J. B. da Silva, Lucas M. de Carvalho, Lucas S. Parreiras, João Paulo L. F. Cairo, Marina P. Marone, Thiago A. Gonçalves, Desireé S. Silva, Miriam Dantzger, Fernanda L. de Figueiredo, Marcelo F. Carazzolle, Gonçalo A. G. Pereira and André Damasio
J. Fungi 2024, 10(6), 407; https://doi.org/10.3390/jof10060407 - 5 Jun 2024
Viewed by 473
Abstract
Trichoderma erinaceum is a filamentous fungus that was isolated from decaying sugarcane straw at a Brazilian ethanol biorefinery. This fungus shows potential as a source of plant cell wall-degrading enzymes (PCWDEs). In this study, we conducted a comprehensive multiomics investigation of T. erinaceum [...] Read more.
Trichoderma erinaceum is a filamentous fungus that was isolated from decaying sugarcane straw at a Brazilian ethanol biorefinery. This fungus shows potential as a source of plant cell wall-degrading enzymes (PCWDEs). In this study, we conducted a comprehensive multiomics investigation of T. erinaceum to gain insights into its enzymatic capabilities and genetic makeup. Firstly, we performed genome sequencing and assembly, which resulted in the identification of 10,942 genes in the T. erinaceum genome. We then conducted transcriptomics and secretome analyses to map the gene expression patterns and identify the enzymes produced by T. erinaceum in the presence of different substrates such as glucose, microcrystalline cellulose, pretreated sugarcane straw, and pretreated energy cane bagasse. Our analyses revealed that T. erinaceum highly expresses genes directly related to lignocellulose degradation when grown on pretreated energy cane and sugarcane substrates. Furthermore, our secretome analysis identified 35 carbohydrate-active enzymes, primarily PCWDEs. To further explore the enzymatic capabilities of T. erinaceum, we selected a β-glucosidase from the secretome data for recombinant production in a fungal strain. The recombinant enzyme demonstrated superior performance in degrading cellobiose and laminaribiose compared to a well-known enzyme derived from Trichoderma reesei. Overall, this comprehensive study provides valuable insights into both the genetic patterns of T. erinaceum and its potential for lignocellulose degradation and enzyme production. The obtained genomic data can serve as an important resource for future genetic engineering efforts aimed at optimizing enzyme production from this fungus. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

19 pages, 2811 KiB  
Article
Differential Carbon Catabolite Repression and Hemicellulolytic Ability among Pathotypes of Colletotrichum lindemuthianum against Natural Plant Substrates
by Karla Morelia Díaz-Tapia, María Guadalupe Zavala-Páramo, Maria Guadalupe Villa-Rivera, Ma. Irene Morelos-Martínez, Everardo López-Romero, June Simpson, Jeni Bolaños-Rebolledo and Horacio Cano-Camacho
J. Fungi 2024, 10(6), 406; https://doi.org/10.3390/jof10060406 - 5 Jun 2024
Viewed by 308
Abstract
Colletotrichum lindemuthianum is a phytopathogenic fungus that causes anthracnose in common beans (Phaseolus vulgaris) and presents a great diversity of pathotypes with different levels of virulence against bean varieties worldwide. The purpose of this study was to establish whether pathotypic diversity [...] Read more.
Colletotrichum lindemuthianum is a phytopathogenic fungus that causes anthracnose in common beans (Phaseolus vulgaris) and presents a great diversity of pathotypes with different levels of virulence against bean varieties worldwide. The purpose of this study was to establish whether pathotypic diversity is associated with differences in the mycelial growth and secretion of plant-cell-wall-degrading enzymes (PCWDEs). We evaluated growth, hemicellulase and cellulase activity, and PCWDE secretion in four pathotypes of C. lindemuthianum in cultures with glucose, bean hypocotyls and green beans of P. vulgaris, and water hyacinth (Eichhornia crassipes). The results showed differences in the mycelial growth, hemicellulolytic activity, and PCWDE secretion among the pathotypes. Glucose was not the preferred carbon source for the best mycelial growth in all pathotypes, each of which showed a unique PCWDE secretion profile, indicating different levels of carbon catabolite regulation (CCR). The pathotypes showed a high differential hemicellulolytic capacity to degrade host and water hyacinth tissues, suggesting CCR by pentoses and that there are differences in the absorption and metabolism of different monosaccharides and/or disaccharides. We propose that different levels of CCR could optimize growth in different host tissues and could allow for consortium behavior in interactions with bean crops. Full article
(This article belongs to the Special Issue Fungal Plant Pathogens)
Show Figures

Figure 1

18 pages, 4820 KiB  
Article
Pythium banihashemianum sp. nov. and Globisporangium izadpanahii sp. nov.: Two New Oomycete Species from Rice Paddies in Iran
by Fatemeh Salmaninezhad, Reza Mostowfizadeh-Ghalamfarsa and Santa Olga Cacciola
J. Fungi 2024, 10(6), 405; https://doi.org/10.3390/jof10060405 - 5 Jun 2024
Viewed by 336
Abstract
An investigation into oomycete diversity in rice paddies of Fars Province in Iran led to the identification of two new Pythium sensu lato (s.l.) species as Globisporangium izadpanahii sp. nov. and Pythium banihashemianum sp. nov. The identification was based on morphological and [...] Read more.
An investigation into oomycete diversity in rice paddies of Fars Province in Iran led to the identification of two new Pythium sensu lato (s.l.) species as Globisporangium izadpanahii sp. nov. and Pythium banihashemianum sp. nov. The identification was based on morphological and physiological features as well as on the phylogenetic analysis of nuclear (ITS and βtub) and mitochondrial (cox1 and cox2) loci using Bayesian inference and Maximum Likelihood. The present paper formally describes these two new species and defines their phylogenetic relationships with other congeneric species. According to multiple gene genealogy analysis, G. izadpanahii sp. nov. was grouped with other species of Globisporangium (formerly, clade G of Pythium s.l.) and was closely related to both G. nagaii and the recently described G. coniferarum. The second species, designated P. banihashemianum sp. nov., was grouped with other species of Pythium sensu stricto (formerly, clade B of Pythium s.l.) and, according to the phylogenetic analysis, shared an ancestor with P. plurisporium. The production of globose hyphal swellings was a major characteristic of G. izadpanahii sp. nov., which did not produce vesicles and zoospores. In pathogenicity tests on rice seedlings, P. banihashemianum sp. nov. isolates were highly pathogenic and caused severe root and crown rot, while G. izadpanahii sp. nov. isolates were not pathogenic. Full article
Show Figures

Figure 1

14 pages, 960 KiB  
Article
Changes in the Arbuscular Mycorrhizal Fungal Community in the Roots of Eucalyptus grandis Plantations at Different Ages in Southern Jiangxi, China
by Yao Jiang, Xiao-Yong Mo, Li-Ting Liu, Guo-Zhen Lai and Guo-Wei Qiu
J. Fungi 2024, 10(6), 404; https://doi.org/10.3390/jof10060404 - 4 Jun 2024
Viewed by 327
Abstract
Eucalyptus roots form symbiotic relationships with arbuscular mycorrhizal (AM) fungi in soil to enhance adaptation in challenging environments. However, the evolution of the AM fungal community along a chronosequence of eucalypt plantations and its relationship with soil properties remain unclear. In this study, [...] Read more.
Eucalyptus roots form symbiotic relationships with arbuscular mycorrhizal (AM) fungi in soil to enhance adaptation in challenging environments. However, the evolution of the AM fungal community along a chronosequence of eucalypt plantations and its relationship with soil properties remain unclear. In this study, we evaluated the tree growth, soil properties, and root AM fungal colonization of Eucalyptus grandis W. Hill ex Maiden plantations at different ages, identified the AM fungal community composition by high-throughput sequencing, and developed a structural equation model among trees, soil, and AM fungi. Key findings include the following: (1) The total phosphorus (P) and total potassium (K) in the soil underwent an initial reduction followed by a rise with different stand ages. (2) The rate of AM colonization decreased first and then increased. (3) The composition of the AM fungal community changed significantly with different stand ages, but there was no significant change in diversity. (4) Paraglomus and Glomus were the dominant genera, accounting for 70.1% and 21.8% of the relative abundance, respectively. (5) The dominant genera were mainly influenced by soil P, the N content, and bulk density, but the main factors were different with stand ages. The results can provide a reference for fertilizer management and microbial formulation manufacture for eucalyptus plantations. Full article
(This article belongs to the Special Issue Fungal Communities in Various Environments)
34 pages, 9334 KiB  
Article
Eleven New Species of the Genus Tarzetta (Tarzettaceae, Pezizales) from Mexico
by Marcos Sánchez-Flores, Jesús García-Jiménez, Tania Raymundo, César R. Martínez-González, Juan F. Hernández-Del Valle, Marco A. Hernández-Muñoz, Javier I. de la Fuente, Martín Esqueda, Alejandrina Ávila Ortiz and Ricardo Valenzuela
J. Fungi 2024, 10(6), 403; https://doi.org/10.3390/jof10060403 - 4 Jun 2024
Viewed by 628
Abstract
The genus Tarzetta is distributed mainly in temperate forests and establishes ectomycorrhizal associations with angiosperms and gymnosperms. Studies on this genus are scarce in México. A visual, morphological, and molecular (ITS-LSU) description of T. americupularis, T. cupressicola, T. davidii, T. [...] Read more.
The genus Tarzetta is distributed mainly in temperate forests and establishes ectomycorrhizal associations with angiosperms and gymnosperms. Studies on this genus are scarce in México. A visual, morphological, and molecular (ITS-LSU) description of T. americupularis, T. cupressicola, T. davidii, T. durangensis, T. mesophila, T. mexicana, T. miquihuanensis, T. poblana, T. pseudobronca, T. texcocana, and T. victoriana was carried out in this work, associated with Abies, Quercus, and Pinus. The results of SEM showed an ornamented ascospores formation by Mexican Taxa; furthermore, the results showed that T. catinus and T. cupularis are only distributed in Europe and are not associated with any American host. Full article
(This article belongs to the Special Issue Diversity, Taxonomy and Ecology of Ascomycota)
Show Figures

Figure 1

18 pages, 11389 KiB  
Article
Inhibitory Effect and Mechanism of Carvacrol against Black Mold Disease Agent Alternaria alternata in Goji Berries
by Junjie Wang, Yueli Zhou, Peng Wang, Lunaike Zhao, Huaiyu Zhang, Huan Qu and Fei Xu
J. Fungi 2024, 10(6), 402; https://doi.org/10.3390/jof10060402 - 3 Jun 2024
Viewed by 277
Abstract
Alternaria alternata, as a main decay fungus of goji berry, can produce mycotoxins such as alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA). Carvacrol (CVR) has exhibited a broad-spectrum antifungal activity in vitro. We assumed that CVR can also be [...] Read more.
Alternaria alternata, as a main decay fungus of goji berry, can produce mycotoxins such as alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA). Carvacrol (CVR) has exhibited a broad-spectrum antifungal activity in vitro. We assumed that CVR can also be applied to control Alternaria rot on goji berries and mycotoxins produced by the pathogens. To investigate whether CVR impacts the accumulation of mycotoxins and cell membrane damage of A. alternata, the antifungal activity of CVR on the fungal growth and mycotoxin production was evaluated in this study. The results showed that the minimum inhibitory concentration (MIC) of CVR against A. alternata was 0.12 µL/mL. Meanwhile, the destruction of plasma membrane integrity, cytoplasmic leakage, intracellular oxidative damage, and inhibitory effect in vivo were also observed in A. alternata treated with CVR. Moreover, CVR significantly reduced the accumulation of AOH, AME, and TeA. Transcriptomic profiling was performed by means of comparative RNA-Seq analysis to research the gene expression level of A. alternata, which attested to significant changes in nitrogen metabolism, carbon utilization, fatty acid oxidation, and antioxidant enzymes in CVR-treated A. alternata. This study suggests a new understanding of the molecular mechanism of response to CVR treatment in A. alternata, indicating that CVR is a novel antifungal agent with the potential to be applied to various fungi. Full article
(This article belongs to the Special Issue Control of Postharvest Fungal Diseases)
Show Figures

Figure 1

20 pages, 4569 KiB  
Article
Contrasting Performance of Two Winter Wheat Varieties Susceptible to Leaf Rust under Diverse Pathogen Pressure, Fungicide Application, and Cultivation Practices
by Radivoje Jevtić, Vesna Župunski, Dragan Živančev, Emilija Arsov, Sasa Mitrev, Ljupco Mihajlov and Branka Orbović
J. Fungi 2024, 10(6), 401; https://doi.org/10.3390/jof10060401 - 2 Jun 2024
Viewed by 272
Abstract
This study investigated the relationship between yield, thousand kernel weight (TKW), and crude protein of soft white winter wheat–club variety (Barbee) and soft white winter wheat common variety (Zvezdana) susceptible to leaf rust and powdery mildew under different cultivation practices. Results revealed divergence [...] Read more.
This study investigated the relationship between yield, thousand kernel weight (TKW), and crude protein of soft white winter wheat–club variety (Barbee) and soft white winter wheat common variety (Zvezdana) susceptible to leaf rust and powdery mildew under different cultivation practices. Results revealed divergence in associations between yield, TKW, and crude protein loss of winter wheat varieties susceptible to obligate pathogens. Under the same level of leaf rust infection, N-input limited yield loss of the two varieties but not to the same extent. TKW loss was affected only by variety×cultivation practice and was significantly correlated with yield loss (r = −0.727, p = 0.011) and crude protein loss (r = −0.600, p = 0.05) only in club winter wheat. We suspected that Ninput affects the difference in the relationship between yield and TKW loss among varieties. Crude protein and yield loss had a low association (R2 = 18%, p = 0.05). Finally, this study indicated that more attention should be paid to the determination of pathogen pressure that triggers yield loss. It also pointed out that yield, TKW, and crude protein response to fungicides could differ in susceptible varieties. The contribution of fungicide to yield enhancement was highly associated with the specific reaction of the variety to pathogen infection rather than solely the disease level itself. Full article
(This article belongs to the Special Issue Plant Fungal Diseases and Crop Protection)
Show Figures

Figure 1

12 pages, 1019 KiB  
Article
Histoplasmosis in Non-HIV Infected Patients: Another Neglected Infection in French Guiana
by Houari Aissaoui, Morgane Bourne-Watrin, Benoit Lemarie, Genevieve Guillot, Alolia Aboikoni, Piseth Chhorn, Dana Gaudard, Ghazi Hadj-Amara, Ricardo Manasse, Mahamado Ouedraogo, Charles Salloum, Magalie Demar, Loïc Epelboin, Hatem Kallel, Antoine Adenis, Mathieu Nacher, Kinan Drak Alsibai and Dominique Louvel
J. Fungi 2024, 10(6), 400; https://doi.org/10.3390/jof10060400 - 1 Jun 2024
Viewed by 252
Abstract
(1) Background: Only a few studies on histoplasmosis in immunocompetent patients have been reported in French Guiana. Therefore, we conducted a detailed clinical description of hospitalized patients suffering with histoplasmosis among non-HIV patients. (2) Methods: This is a single-center, retrospective study conducted at [...] Read more.
(1) Background: Only a few studies on histoplasmosis in immunocompetent patients have been reported in French Guiana. Therefore, we conducted a detailed clinical description of hospitalized patients suffering with histoplasmosis among non-HIV patients. (2) Methods: This is a single-center, retrospective study conducted at Cayenne Hospital Center between 2008 and 2022. (3) Results: Our cohort was composed of 31 (91%) adults (>18 years of age) and 3 (9%) children, with a sex ratio, M:F, of 1:2. The median age was higher among the women than among the men (70 versus 54 years). The collection of respiratory samples constituted the majority of the performed examinations (38%). Fever (>37 °C) was found in 56% of patients. Surprisingly, the histoplasmosis was disseminated in 82% of patients with an overall case fatality rate of 14.7%. However, immunosuppressive conditions were found in 52% (16/31) of the adult patients, including lymphoid hemopathies, diabetes and immunosuppressive drugs. Conclusions: This disease, though rare and usually considered a mostly benign disease in non-HIV patients, presented a relatively high mortality rate in our cohort. Thus, histoplasmosis should be suspected, screened and investigated as a first line of defense in highly endemic areas, even in immunocompetent and non-HIV patients, especially those with fever or chronic respiratory symptoms. Full article
(This article belongs to the Special Issue Histoplasma and Histoplasmosis, 4th Edition)
Show Figures

Figure 1

17 pages, 5075 KiB  
Article
Onychomycosis in Foot and Toe Malformations
by Eckart Haneke
J. Fungi 2024, 10(6), 399; https://doi.org/10.3390/jof10060399 - 31 May 2024
Viewed by 233
Abstract
Introduction: It has long been accepted that trauma is one of the most important and frequent predisposing factors for onychomycoses. However, the role of direct trauma in the pathogenesis of fungal nail infections has only recently been elucidated in a series of [...] Read more.
Introduction: It has long been accepted that trauma is one of the most important and frequent predisposing factors for onychomycoses. However, the role of direct trauma in the pathogenesis of fungal nail infections has only recently been elucidated in a series of 32 cases of post-traumatic single-digit onychomycosis. The importance of repeated trauma due to foot and toe abnormalities was rarely investigated. Aimof the study: This is a multicenter single-author observational study over a period of 6 years performed at specialized nail clinics in three countries. All patient photographs taken by the author during this period were screened for toenail alterations, and all toe onychomycosis cases were checked for whether they contained enough information to evaluate potential foot and toe abnormalities. Particular attention was paid to the presence of hallux valgus, hallux valgus interphalangeus, hallux erectus, inward rotation of the big toe, and outward rotation of the little toe, as well as splay foot. Only cases with unequivocal proof of fungal nail infection by either histopathology, mycologic culture, or polymerase chain reaction (PCR) were accepted. Results: Of 1653 cases, 185 were onychomycoses, proven by mycologic culture, PCR, or histopathology. Of these, 179 involved at least one big toenail, and 6 affected one or more lesser toenails. Three patients consulted us for another toenail disease, and onychomycosis was diagnosed as a second disease. Eight patients had a pronounced tinea pedum. Relatively few patients had a normal big toe position (n = 9). Most of the cases had a mild to marked hallux valgus (HV) (105) and a hallux valgus interphalangeus (HVI) (143), while hallux erectus was observed in 43 patients, and the combination of HV and HVI was observed 83 times. Discussion: The very high percentage of foot and toe deformations was surprising. It may be hypothesized that this is not only a pathogenetically important factor but may also play an important role in the localization of the fungal infection, as no marked hallux deviation was noted in onychomycoses that affected the lesser toes only. As the management of onychomycoses is a complex procedure involving the exact diagnosis with a determination of the pathogenic fungus, the nail growth rate, the type of onychomycosis, its duration, and predisposing factors, anomalies of the toe position may be important. Among the most commonly mentioned predisposing factors are peripheral circulatory insufficiency, venous stasis, peripheral neuropathy, immune deficiency, and iatrogenic immunosuppression, whereas foot problems are not given enough attention. Unfortunately, many of these predisposing and aggravating factors are difficult to treat or correct. Generally, when explaining the treatment of onychomycoses to patients, the importance of these orthopedic alterations is not or only insufficiently discussed. In view of the problems encountered with the treatment of toenail mycoses, this attitude should be changed in order to make the patient understand why there is such a low cure rate despite excellent minimal inhibitory drug concentrations in the laboratory. Full article
(This article belongs to the Special Issue Hot Topics in Superficial Fungal Infections)
Show Figures

Figure 1

14 pages, 1014 KiB  
Article
Genome Analysis of Pseudomonas viciae G166 Conferring Antifungal Activity in Grapevine
by Xiaoshu Jing, Ling Su, Xiangtian Yin, Yingchun Chen, Xueqiang Guan, Dongyue Yang and Yuxia Sun
J. Fungi 2024, 10(6), 398; https://doi.org/10.3390/jof10060398 - 31 May 2024
Viewed by 213
Abstract
Grapevine (Vitis vinifera) is one of the major economic fruit crops but suffers many diseases, causing damage to the quality of grapes. Strain G166 was isolated from the rhizosphere of grapevine and was found to exhibited broad-spectrum antagonistic activities against fungal [...] Read more.
Grapevine (Vitis vinifera) is one of the major economic fruit crops but suffers many diseases, causing damage to the quality of grapes. Strain G166 was isolated from the rhizosphere of grapevine and was found to exhibited broad-spectrum antagonistic activities against fungal pathogens on grapes in vitro, such as Coniella diplodiella, Botrytis cinerea, and Colletotrichum gloeosporioides. Whole-genome sequencing revealed that G166 contained a 6613582 bp circular chromosome with 5749 predicted coding DNA sequences and an average GC content of 60.57%. TYGS analysis revealed that G166 belongs to Pseudomonas viciae. Phenotype analysis indicated that P. viciae G166 remarkably reduced the severity of grape white rot disease in the grapevine. After inoculation with C. diplodiella, more H2O2 and MDA accumulated in the leaves and resulted in decreases in the Pn and chlorophyll content. Conversely, G166-treated grapevine displayed less oxidative damage with lower H2O2 levels and MDA contents under the pathogen treatments. Subsequently, G166-treated grapevine could sustain a normal Pn and chlorophyll content. Moreover, the application of P. viciae G166 inhibited the growth of mycelia on detached leaves and berries, while more disease symptoms occurred in non-bacterized leaves and berries. Therefore, P. viciae G166 served as a powerful bioagent against grape white rot disease. Using antiSMASH prediction and genome comparisons, a relationship between non-ribosomal peptide synthase clusters and antifungal activity was found in the genome of P. viciae G166. Taken together, P. viciae G166 shows promising antifungal potential to improve fruit quality and yield in ecological agriculture. Full article
(This article belongs to the Special Issue Biocontrol of Grapevine Diseases, 2nd Edition)
12 pages, 1598 KiB  
Article
In Vitro Activitiy of Rezafungin in Comparison with Anidulafungin and Caspofungin against Invasive Fungal Isolates (2017 to 2022) in China
by Simin Yang, Feifei Wan, Min Zhang, Huiping Lin, Liang Hu, Ziyi Zhou, Dongjiang Wang, Aiping Zhou, Lijun Ni, Jian Guo and Wenjuan Wu
J. Fungi 2024, 10(6), 397; https://doi.org/10.3390/jof10060397 - 31 May 2024
Viewed by 181
Abstract
The efficacy of different echinocandins is assessed by evaluating the in vitro activity of a novel antifungal, rezafungin, against invasive fungal isolates in comparison with anidulafungin and caspofungin. Using the broth microdilution (BMD) method, the susceptibility of 1000 clinical Candida isolates (including 400 [...] Read more.
The efficacy of different echinocandins is assessed by evaluating the in vitro activity of a novel antifungal, rezafungin, against invasive fungal isolates in comparison with anidulafungin and caspofungin. Using the broth microdilution (BMD) method, the susceptibility of 1000 clinical Candida isolates (including 400 C. albicans, 200 C. glabrata, 200 C. parapsilosis, 150 C. tropicalis and 50 C. krusei) and 150 Aspergillus isolates (100 A. fumigatus and 50 A. flavus) from the Eastern China Invasive Fungi Infection Group (ECIFIG) was tested for the antifungals including anidulafungin, rezafungin, caspofungin and fluconazole. The echinocandins showed strong activity against C. albicans that was maintained against fluconazole-resistant isolates. The GM MIC (geometric mean minimum inhibitory concentration) value of rezafungin was found to be comparable to that of anidulafungin or caspofungin against the five tested common Candida species. C. tropicalis exhibited higher resistance rates (about 8.67–40.67% in different antifungals) than the other four Candida species. Through the sequencing of FKS genes, we searched for mutations in echinocandin-resistant C. tropicalis isolates and found that all displayed alterations in FKS1 S654P. The determined MEC (minimal effective concentration) values against A. fumigatus and A. flavus for rezafungin (0.116 μg/mL, 0.110 μg/mL) are comparable to those of caspofungin (0.122 μg/mL, 0.142 μg/mL) but higher than for anidulafungin (0.064 μg/mL, 0.059 μg/mL). Thus, the in vitro activity of rezafungin appears comparable to anidulafungin and caspofungin against most common Candida and Aspergillus species. Rezafungin showed higher susceptibility rates against C. glabrata. Rezafungin indicates its potent activity for potential clinical application. Full article
(This article belongs to the Special Issue Advances in Antifungal Drugs)
Show Figures

Figure 1

22 pages, 6038 KiB  
Review
The Biosynthesis, Structure Diversity and Bioactivity of Sterigmatocystins and Aflatoxins: A Review
by Wenxing Li, Zhaoxia Chen, Xize Li, Xinrui Li, Yang Hui and Wenhao Chen
J. Fungi 2024, 10(6), 396; https://doi.org/10.3390/jof10060396 - 31 May 2024
Viewed by 235
Abstract
Sterigmatocystins and aflatoxins are a group of mycotoxins mainly isolated from fungi of the genera Aspergillus. Since the discovery of sterigmatocystins in 1954 and aflatoxins in 1961, many scholars have conducted a series of studies on their structural identification, synthesis and biological [...] Read more.
Sterigmatocystins and aflatoxins are a group of mycotoxins mainly isolated from fungi of the genera Aspergillus. Since the discovery of sterigmatocystins in 1954 and aflatoxins in 1961, many scholars have conducted a series of studies on their structural identification, synthesis and biological activities. Studies have shown that sterigmatocystins and aflatoxins have a wide range of biological activities such as antitumour, antibacterial, anti-inflammatory, antiplasmodial, etc. The sterigmatocystins and aflatoxins had been shown to be hepatotoxic and nephrotoxic in animals. This review attempts to give a comprehensive summary of progress on the chemical structural features, synthesis, and bioactivity of sterigmatocystins and aflatoxins reported from 1954 to April 2024. A total of 72 sterigmatocystins and 20 aflatoxins are presented in this review. This paper reviews the chemical diversity and potential activity and toxicity of sterigmatocystins and aflatoxins, enhances the understanding of sterigmatocystins and aflatoxins that adversely affect humans and animals, and provides ideas for their prevention, research and development. Full article
(This article belongs to the Special Issue Recent Advances in Fungal Secondary Metabolism, 2nd Edition)
Show Figures

Figure 1

14 pages, 6772 KiB  
Review
The Need and Opportunity to Update the Inventory of Plant Pathogenic Fungi and Oomycetes in Mexico
by Juan Manuel Tovar-Pedraza, Alma Rosa Solano-Báez, Santos Gerardo Leyva-Mir, Bertha Tlapal-Bolaños, Moisés Camacho-Tapia, Elizabeth García-León, Victoria Ayala-Escobar, Cristian Nava-Díaz, Andrés Quezada-Salinas, Víctor Santiago-Santiago, Hugo Beltrán-Peña, Maria Alondra Hernandez-Hernandez, Karla Jenifer Juárez-Cruz and Guillermo Márquez-Licona
J. Fungi 2024, 10(6), 395; https://doi.org/10.3390/jof10060395 - 31 May 2024
Viewed by 208
Abstract
Mexico generates specific phytosanitary regulations for each product and origin to prevent the entry of quarantine pests and/or delay their spread within the national territory, including fungi and oomycetes. Phytosanitary regulations are established based on available information on the presence or absence of [...] Read more.
Mexico generates specific phytosanitary regulations for each product and origin to prevent the entry of quarantine pests and/or delay their spread within the national territory, including fungi and oomycetes. Phytosanitary regulations are established based on available information on the presence or absence of these pathogens in the country; however, the compilation and precise analysis of reports is a challenging task due to many publications lacking scientific rigor in determining the presence of a taxon of phytosanitary interest in the country. This review evaluated various studies reporting the presence of plant pathogenic fungi and oomycetes in Mexico and concluded that some lists of diseases and phytopathogenic organisms lack technical-scientific basis. Thus, it highlights the need and presents an excellent opportunity to establish a National Collection of Fungal Cultures and a National Herbarium for obligate parasites, as well as to generate a National Database of Phytopathogenic Fungi and Oomycetes present in Mexico, supported by the combination of morphological, molecular, epidemiological, pathogenicity, symptom, and micrograph data. If realized, this would have a direct impact on many future applications related to various topics, including quarantines, risk analysis, biodiversity studies, and monitoring of fungicide resistance, among others. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

20 pages, 2367 KiB  
Review
Therapeutic Potential of Fungal Polysaccharides in Gut Microbiota Regulation: Implications for Diabetes, Neurodegeneration, and Oncology
by Alexandru Stefan Barcan, Rares Andrei Barcan and Emanuel Vamanu
J. Fungi 2024, 10(6), 394; https://doi.org/10.3390/jof10060394 - 31 May 2024
Viewed by 301
Abstract
This review evaluates the therapeutic effects of polysaccharides derived from mushroom species that have medicinal and edible properties. The fungal polysaccharides were recently studied, focusing on their modulation of the gut microbiota and their impact on various diseases. The study covers both clinical [...] Read more.
This review evaluates the therapeutic effects of polysaccharides derived from mushroom species that have medicinal and edible properties. The fungal polysaccharides were recently studied, focusing on their modulation of the gut microbiota and their impact on various diseases. The study covers both clinical and preclinical studies, detailing the results and highlighting the significant influence of these polysaccharides on gut microbiota modulation. It discusses the potential health benefits derived from incorporating these polysaccharides into the diet for managing chronic diseases such as diabetes, neurodegenerative disorders, and cancer. Furthermore, the review emphasizes the interaction between fungal polysaccharides and the gut microbiota, underscoring their role in modulating the gut microbial community. It presents a systematic analysis of the findings, demonstrating the substantial impact of fungal polysaccharides on gut microbiota composition and function, which may contribute to their therapeutic effects in various chronic conditions. We conclude that the modulation of the gut microbiota by these polysaccharides may play a crucial role in mediating their therapeutic effects, offering a promising avenue for further research and potential applications in disease prevention and treatment. Full article
Show Figures

Figure 1

16 pages, 5382 KiB  
Article
Genome-Wide Identification of SNARE Family Genes and Functional Characterization of an R-SNARE Gene BbSEC22 in a Fungal Insect Pathogen Beauveria bassiana
by Fang Li, Juefeng Zhang, Haiying Zhong, Kaili Yu and Jianming Chen
J. Fungi 2024, 10(6), 393; https://doi.org/10.3390/jof10060393 - 31 May 2024
Viewed by 159
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are central components of the machinery mediating cell membrane fusion and intracellular vesicular trafficking in eukaryotic cells, and have been well-documented to play critical roles in growth, development, and pathogenesis in the filamentous fungal plant pathogens. [...] Read more.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are central components of the machinery mediating cell membrane fusion and intracellular vesicular trafficking in eukaryotic cells, and have been well-documented to play critical roles in growth, development, and pathogenesis in the filamentous fungal plant pathogens. However, little is known about the contributions of SNAREs to the physiology and biocontrol potential in entomopathogenic filamentous fungi. Here, a genome-wide analysis of SNARE genes was performed taking advantage of the available whole genome sequence of Beauveria bassiana, a classical entomopathogenic fungus. Based on the compared genomic method, 22 genes encoding putative SNAREs were identified from the whole genome of B. bassiana, and were classified into four groups (7 Qa-, 4 Qb-, 6 Qc-, and 5 R-SNAREs) according to the conserved structural features of their encoding proteins. An R-SNARE encoding gene BbSEC22 was further functionally characterized by gene disruption and complementation. The BbSEC22 null mutant showed a fluffy appearance in mycelial growth and an obvious lag in conidial germination. The null mutant also exhibited significantly increased sensitivity to oxidative stress and cell wall perturbing agents and reduced the yield of conidia production by 43.1% compared with the wild-type strain. Moreover, disruption of BbSEC22 caused a significant decrease in conidial virulence to Spodoptera litura larvae. Overall, our results provide an overview of vesicle trafficking in B. bassiana and revealed that BbSec22 was a multifunctional protein associated with mycelial growth, sporulation, conidial germination, stress tolerance, and insecticidal virulence. Full article
Show Figures

Figure 1

13 pages, 2599 KiB  
Article
Comparative Genomics of the First Resistant Candida auris Strain Isolated in Mexico: Phylogenomic and Pan-Genomic Analysis and Mutations Associated with Antifungal Resistance
by Arturo Casimiro-Ramos, Celia Bautista-Crescencio, Alvaro Vidal-Montiel, Gloria M. González, Juan Alfredo Hernández-García, César Hernández-Rodríguez and Lourdes Villa-Tanaca
J. Fungi 2024, 10(6), 392; https://doi.org/10.3390/jof10060392 - 30 May 2024
Viewed by 324
Abstract
Candida auris is an emerging multidrug-resistant and opportunistic pathogenic yeast. Whole-genome sequencing analysis has defined five major clades, each from a distinct geographic region. The current study aimed to examine the genome of the C. auris 20–1498 strain, which is the first isolate [...] Read more.
Candida auris is an emerging multidrug-resistant and opportunistic pathogenic yeast. Whole-genome sequencing analysis has defined five major clades, each from a distinct geographic region. The current study aimed to examine the genome of the C. auris 20–1498 strain, which is the first isolate of this fungus identified in Mexico. Based on whole-genome sequencing, the draft genome was found to contain 70 contigs. It had a total genome size of 12.86 Mbp, an N50 value of 1.6 Mbp, and an average guanine-cytosine (GC) content of 45.5%. Genome annotation revealed a total of 5432 genes encoding 5515 proteins. According to the genomic analysis, the C. auris 20–1498 strain belongs to clade IV (containing strains endemic to South America). Of the two genes (ERG11 and FKS1) associated with drug resistance in C. auris, a mutation was detected in K143R, a gene located in a mutation hotspot of ERG11 (lanosterol 14-α-demethylase), an antifungal drug target. The focus on whole-genome sequencing and the identification of mutations linked to the drug resistance of fungi could lead to the discovery of new therapeutic targets and new antifungal compounds. Full article
(This article belongs to the Special Issue Multidrug-Resistant Fungi)
Show Figures

Figure 1

Previous Issue
Back to TopTop