Next Article in Journal / Special Issue
Studies of Genes Involved in Congenital Heart Disease
Previous Article in Journal / Special Issue
The Ig CAM CAR is Implicated in Cardiac Development and Modulates Electrical Conduction in the Mature Heart
Article Menu

Export Article

Open AccessReview
J. Cardiovasc. Dev. Dis. 2014, 1(1), 121-133; doi:10.3390/jcdd1010121

The Popeye Domain Containing Genes and cAMP Signaling

Harefield Heart Science Centre, National Heart and Lung Institute (NHLI), Imperial College London, Hill End Road, Harefield UB96JH, UK
Current affiliation: Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
*
Author to whom correspondence should be addressed.
Received: 3 April 2014 / Revised: 6 May 2014 / Accepted: 7 May 2014 / Published: 21 May 2014
View Full-Text   |   Download PDF [471 KB, uploaded 21 May 2014]   |  

Abstract

3'-5'-cyclic adenosine monophosphate (cAMP) is a second messenger, which plays an important role in the heart. It is generated in response to activation of G-protein-coupled receptors (GPCRs). Initially, it was thought that protein kinase A (PKA) exclusively mediates cAMP-induced cellular responses such as an increase in cardiac contractility, relaxation, and heart rate. With the identification of the exchange factor directly activated by cAMP (EPAC) and hyperpolarizing cyclic nucleotide-gated (HCN) channels as cAMP effector proteins it became clear that a protein network is involved in cAMP signaling. The Popeye domain containing (Popdc) genes encode yet another family of cAMP-binding proteins, which are prominently expressed in the heart. Loss-of-function mutations in mice are associated with cardiac arrhythmia and impaired skeletal muscle regeneration. Interestingly, the cardiac phenotype, which is present in both, Popdc1 and Popdc2 null mutants, is characterized by a stress-induced sinus bradycardia, suggesting that Popdc proteins participate in cAMP signaling in the sinuatrial node. The identification of the two-pore channel TREK-1 and Caveolin 3 as Popdc-interacting proteins represents a first step into understanding the mechanisms of heart rate modulation triggered by Popdc proteins. View Full-Text
Keywords: Popeye domain containing genes; cAMP; phosphate binding cassette; cAMP-binding proteins; pacemaking; cardiac arrhythmia; fight-or-flight response; sinus node; cardiac conduction system Popeye domain containing genes; cAMP; phosphate binding cassette; cAMP-binding proteins; pacemaking; cardiac arrhythmia; fight-or-flight response; sinus node; cardiac conduction system
Figures

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Brand, T.; Poon, K.L.; Simrick, S.; Schindler, R.F.R. The Popeye Domain Containing Genes and cAMP Signaling. J. Cardiovasc. Dev. Dis. 2014, 1, 121-133.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
J. Cardiovasc. Dev. Dis. EISSN 2308-3425 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top