Previous Issue
Volume 12, May
 
 

Toxics, Volume 12, Issue 6 (June 2024) – 58 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
22 pages, 3693 KiB  
Review
Recent Progress on Physiologically Based Pharmacokinetic (PBPK) Model: A Review Based on Bibliometrics
by He Huang, Wenjing Zhao, Ning Qin and Xiaoli Duan
Toxics 2024, 12(6), 433; https://doi.org/10.3390/toxics12060433 - 14 Jun 2024
Viewed by 64
Abstract
Physiologically based pharmacokinetic/toxicokinetic (PBPK/PBTK) models are designed to elucidate the mechanism of chemical compound action in organisms based on the physiological, biochemical, anatomical, and thermodynamic properties of organisms. After nearly a century of research and practice, good results have been achieved in the [...] Read more.
Physiologically based pharmacokinetic/toxicokinetic (PBPK/PBTK) models are designed to elucidate the mechanism of chemical compound action in organisms based on the physiological, biochemical, anatomical, and thermodynamic properties of organisms. After nearly a century of research and practice, good results have been achieved in the fields of medicine, environmental science, and ecology. However, there is currently a lack of a more systematic review of progress in the main research directions of PBPK models, especially a more comprehensive understanding of the application in aquatic environmental research. In this review, a total of 3974 articles related to PBPK models from 1996 to 24 March 2024 were collected. Then, the main research areas of the PBPK model were categorized based on the keyword co-occurrence maps and cluster maps obtained by CiteSpace. The results showed that research related to medicine is the main application area of PBPK. Four major research directions included in the medical field were “drug assessment”, “cross-species prediction”, “drug–drug interactions”, and “pediatrics and pregnancy drug development”, in which “drug assessment” accounted for 55% of the total publication volume. In addition, bibliometric analyses indicated a rapid growth trend in the application in the field of environmental research, especially in predicting the residual levels in organisms and revealing the relationship between internal and external exposure. Despite facing the limitation of insufficient species-specific parameters, the PBPK model is still an effective tool for improving the understanding of chemical–biological effectiveness and will provide a theoretical basis for accurately assessing potential risks to ecosystems and human health. The combination with the quantitative structure–activity relationship model, Bayesian method, and machine learning technology are potential solutions to the previous research gaps. Full article
26 pages, 2464 KiB  
Article
Using the Multicomponent Aerosol FORmation Model (MAFOR) to Determine Improved VOC Emission Factors in Ship Plumes
by Lea Fink, Matthias Karl, Volker Matthias, Andreas Weigelt, Matti Irjala and Pauli Simonen
Toxics 2024, 12(6), 432; https://doi.org/10.3390/toxics12060432 - 14 Jun 2024
Viewed by 112
Abstract
International shipping’s particulate matter primary emissions have a share in global anthropogenic emissions of between 3% and 4%. Ship emissions of volatile organic compounds (VOCs) can play an important role in the formation of fine particulate matter. Using an aerosol box model for [...] Read more.
International shipping’s particulate matter primary emissions have a share in global anthropogenic emissions of between 3% and 4%. Ship emissions of volatile organic compounds (VOCs) can play an important role in the formation of fine particulate matter. Using an aerosol box model for the near-plume scale, this study investigated how the changing VOC emission factor (EF) for ship engines impacts the formation of secondary PM2.5 in ship exhaust plumes that were detected during a measurement campaign. The agreement between measured and modeled particle number size distribution was improved by adjusting VOC emissions, in particular of intermediate-, low-, and extremely low-volatility compounds. The scaling of the VOC emission factor showed that the initial emission factor, based on literature data, had to be multiplied by 3.6 for all VOCs. Information obtained from the box model was integrated into a regional-scale chemistry transport model (CTM) to study the influence of changed VOC ship emissions over the Mediterranean Sea. The regional-scale CTM run with adjusted ship emissions indicated a change in PM2.5 of up to 5% at the main shipping routes and harbor cities in summer. Nevertheless, overall changes due to a change in the VOC EF were rather small, indicating that the size of grid cells in CTMs leads to a fast dilution. Full article
(This article belongs to the Section Air Pollution and Health)
17 pages, 3145 KiB  
Article
Citric Acid Inhibits Cd Absorption and Transportation by Improving the Antagonism of Essential Elements in Rice Organs
by Kexin Chen, Bozhen Yu, Weijie Xue, Yuebing Sun, Changbo Zhang, Xusheng Gao, Xiaojia Zhou, Yun Deng, Jiarun Yang and Boqian Zhang
Toxics 2024, 12(6), 431; https://doi.org/10.3390/toxics12060431 - 14 Jun 2024
Viewed by 173
Abstract
Excessive cadmium (Cd) in rice is a global environmental problem. Therefore, reducing Cd content in rice is of great significance for ensuring food security and human health. A field experiment was conducted to study the effects of foliar application of citric acid (CA) [...] Read more.
Excessive cadmium (Cd) in rice is a global environmental problem. Therefore, reducing Cd content in rice is of great significance for ensuring food security and human health. A field experiment was conducted to study the effects of foliar application of citric acid (CA) on Cd absorption and transportation in rice under high Cd-contaminated soils (2.04 mg·kg−1). This study revealed that there was a negative correlation between Cd content in vegetative organs and CA content, and that foliar spraying of CA (1 mM and 5 mM) significantly increased CA content and reduced Cd content in vegetative organs. The Cd reduction effect of 5 mM CA was better than that of 1 mM, and 5 mM CA reduced Cd content in grains and spikes by 52% and 37%, respectively. CA significantly increased Mn content in vegetative organs and increased Ca/Mn ratios in spikes, flag leaves, and roots. CA significantly reduced soluble Cd content in vegetative organs and promoted the transformation of Cd into insoluble Cd, thus inhibiting the transport of Cd from vegetative organs to grains. The foliar field application of 1 mM and 5 mM CA could inhibit Cd absorption and transportation by reducing Cd bioactivity and increasing the antagonistic of essential elements in rice vegetative organs. These results provide technical support and a theoretical basis for solving the problem of excessive Cd in rice. Full article
Show Figures

Figure 1

14 pages, 1411 KiB  
Article
Associations of Urinary Heavy Metal Mixtures with High Remnant Cholesterol among US Adults: Evidence from the National Health and Nutrition Examination Survey (1998–2018)
by Hui Li, Bei-Jing Cheng, Pei-Yan Yang, Chun Wang, Ke Meng, Tian-Lin Li, Jia Wang and Ran Liu
Toxics 2024, 12(6), 430; https://doi.org/10.3390/toxics12060430 - 13 Jun 2024
Viewed by 319
Abstract
The main objective of our study is to explore the associations between combined exposure to urinary heavy metals and high remnant cholesterol (HRC), a known cardiovascular risk factor. Utilizing data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018, [...] Read more.
The main objective of our study is to explore the associations between combined exposure to urinary heavy metals and high remnant cholesterol (HRC), a known cardiovascular risk factor. Utilizing data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018, we conducted a cross-sectional analysis of 5690 participants, assessing urinary concentrations of ten heavy metals. Ten heavy metals in urine were measured by inductively coupled plasma mass spectrometry (ICP-MS). Fasting residual cholesterol ≥0.8 mmol/L was defined as HRC (using blood samples). Statistical analyses included weighted multivariable logistic regression, weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR) to evaluate the associations of heavy metal exposure with HRC. Stratified analyses based on individual characteristics were also conducted. Multivariable logistic regression found that the four metals (OR Q4 vs. Q1: 1.33, 95% CI: 1.01–1.75 for barium (Ba); OR Q4 vs. Q1: 1.50, 95% CI: 1.16–1.94 for cadmium (Cd); OR Q4 vs. Q1: 1.52, 95% CI: 1.15–2.01 for mercury (Hg); OR Q4 vs. Q1: 1.35, 95% CI: 1.06–1.73 for lead (Pb)) were positively correlated with the elevated risk of HRC after adjusting for covariates. In addition, all three mixed models, including WQS (OR: 1.25; 95% CI: 1.07–1.46), qgcomp (OR: 1.17; 95% CI: 1.03–1.34), and BKMR, consistently showed a significant positive correlation between co-exposure to heavy metal mixtures and HRC, with Ba and Cd being the main contributors within the mixture. These associations were more pronounced in younger adults (20 to 59 years), males, and those with a higher body mass index status (≥25 kg/m2). Our findings reveal a significant relationship between exposure to the mixture of heavy metals and HRC among US adults, with Ba and Cd being the major contributors to the mixture’s overall effect. Public health efforts aimed at reducing heavy metal exposure can help prevent HRC and, in turn, cardiovascular disease. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

14 pages, 1445 KiB  
Article
Navigating a Microplastic Sea: How the Pacific Cupped Oyster (Magallana gigas) Respond to Microplastic Pollution in Lagoons
by Gianluca De Rinaldis, Paolo Pastorino, Tommaso Scirocco, Claudia Sacchetti, Serena Anselmi, Francesca Provenza, Monia Renzi and Antonietta Specchiulli
Toxics 2024, 12(6), 429; https://doi.org/10.3390/toxics12060429 - 13 Jun 2024
Viewed by 276
Abstract
Microplastic pollution poses an escalating concern, particularly in coastal lagoons rich in biodiversity. This study delved into the occurrence of microplastics (MPs) in Magallana gigas (formerly Crassostrea gigas) from the Orbetello and Varano coastal lagoons (Italy), also investigating the response of these [...] Read more.
Microplastic pollution poses an escalating concern, particularly in coastal lagoons rich in biodiversity. This study delved into the occurrence of microplastics (MPs) in Magallana gigas (formerly Crassostrea gigas) from the Orbetello and Varano coastal lagoons (Italy), also investigating the response of these filter-feeding organisms to various colors (P = pink; B = blue; W = white) of high-density polyethylene (HDPE) MP fragments. Oysters were exposed for 7 days under controlled conditions. Subsequently, the oysters underwent analysis for both MP presence and biochemical markers of oxidative stress. Diverse ingestion rates of HDPE were noted among oysters from the two lagoons, eliciting antioxidant responses and modifying baseline activity. The two-way ANOVA revealed the significant effects of treatment (control; HDPE_B; HDPE_P; HDPE_W), site, and the interaction between treatment and site on all biomarkers. Non-metric multidimensional scaling showed a divergent effect of HDPE color on biomarkers. Further investigation is warranted to elucidate the mechanisms underlying the influence of MP color, dose-dependent effects, and the long-term impacts of exposure. Comprehending these intricacies is imperative for devising effective strategies to mitigate plastic pollution and safeguard marine health. Full article
Show Figures

Figure 1

17 pages, 2688 KiB  
Article
Health Impacts of Natural Background Radiation in High Air Pollution Area of Thailand
by Narongchai Autsavapromporn, Chutima Kranrod, Rawiwan Kritsananuwat, Phachirarat Sola, Pitchayaponne Klunklin, Imjai Chitapanarux, Churdsak Jaikang, Tawachai Monum, Masahiro Hosoda and Shinji Tokonami
Toxics 2024, 12(6), 428; https://doi.org/10.3390/toxics12060428 - 13 Jun 2024
Viewed by 205
Abstract
Chiang Mai province of Thailand is known for having the highest natural background radiation in the country, as well as being recognized as one of the world’s most polluted cities for air quality. This represents the major contributor to the development of lung [...] Read more.
Chiang Mai province of Thailand is known for having the highest natural background radiation in the country, as well as being recognized as one of the world’s most polluted cities for air quality. This represents the major contributor to the development of lung cancer. This research aims to estimate the comprehensive dose of both internal and external exposure due to natural background radiation and related health perspectives in the highly polluted area of Chiang Mai. The average values of indoor radon and thoron concentrations in 99 houses over 6 months were 40.8 ± 22.6 and 17.8 ± 16.3 Bq/m3, respectively. These results exceed the worldwide value for indoor radon and thoron (40 and 10 Bq/m3), respectively. During burning season, the average values of indoor radon (56.7 ± 20 Bq/m3) and thoron (20.8 ± 20.4 Bq/m3) concentrations were higher than the world-wide averages. The radon concentration in drinking water (56 samples) varied from 0.1 to 91.9 Bq/L, with an average value of 9.1 ± 22.8 Bq/L. Most of the drinking water samples (87%) fell below the recommended maximum contamination limit of 11.1 Bq/L. The average values of natural radionuclide (226Ra, 232Th and 40K) in 48 soil samples were 47 ± 20.9, 77.9 ± 29.7 and 700.1 ± 233 Bq/kg, respectively. All values were higher than the worldwide average of 35, 30 and 400 Bq/kg, respectively. The average value of outdoor absorbed gamma dose rate (98 ± 32.5 nGy/h) exceeded the worldwide average of 59 nGy/h. Meanwhile, the average activity concentrations of 226Ra, 232Th and 40K in 25 plant food samples were 2.7 ± 0.1, 3.2 ± 1.6 and 1000.7 ± 1.9 Bq/kg, respectively. The 40K concentration was the most predominant in plant foods. The highest concentrations of 226Ra, 232Th and 40K were found in Chinese cabbage, celery and cilantro, respectively. The total annual effective dose for residents in the study area varied from 0.6 to 4.3 mSv, with an average value of 1.4 mSv. This indicates a significant long-term public health hazard due to natural background radiation and suggests a heightened radiation risk for the residents. The excess lifetime cancer risk value (5.4) associated with natural background radiation was found to be higher than the recommended value. Moreover, the number of lung cancer cases per year per million average of 25.2 per million persons per year was in the limit range 170–230 per million people. Overall, our results will be used for future decision making in the prevention of lung cancer risk associated with natural background radiation. Full article
(This article belongs to the Special Issue Radiation: Occurrence, Transport and Effect)
Show Figures

Figure 1

14 pages, 3138 KiB  
Article
Esketamine Exposure Impairs Cardiac Development and Function in Zebrafish Larvae
by Shuo Huang, Jingyi Wang, Tingting Lin, Chengyong He and Zhiyuan Chen
Toxics 2024, 12(6), 427; https://doi.org/10.3390/toxics12060427 - 13 Jun 2024
Viewed by 235
Abstract
Esketamine is a widely used intravenous general anesthetic. However, its safety, particularly its effects on the heart, is not fully understood. In this study, we investigated the effects of esketamine exposure on zebrafish embryonic heart development. Zebrafish embryos were exposed to esketamine at [...] Read more.
Esketamine is a widely used intravenous general anesthetic. However, its safety, particularly its effects on the heart, is not fully understood. In this study, we investigated the effects of esketamine exposure on zebrafish embryonic heart development. Zebrafish embryos were exposed to esketamine at concentrations of 1, 10, and 100 mg/L from 48 h post-fertilization (hpf) to 72 hpf. We found that after exposure, zebrafish embryos had an increased hatching rate, decreased heart rate, stroke volume, and cardiac output. When we exposed transgenic zebrafish of the Tg(cmlc2:EGFP) strain to esketamine, we observed ventricular dilation and thickening of atrial walls in developing embryos. Additionally, we further discovered the abnormal expression of genes associated with cardiac development, including nkx2.5, gata4, tbx5, and myh6, calcium signaling pathways, namely ryr2a, ryr2b, atp2a2a, atp2a2b, slc8a3, slc8a4a, and cacna1aa, as well as an increase in acetylcholine concentration. In conclusion, our findings suggest that esketamine may impair zebrafish larvae’s cardiac development and function by affecting acetylcholine concentration, resulting in weakened cardiac neural regulation and subsequent effects on cardiac function. The insights garnered from this research advocate for a comprehensive safety assessment of esketamine in clinical applications. Full article
Show Figures

Figure 1

10 pages, 1028 KiB  
Communication
Exploring Heavy Metal and Metalloid Exposure in Children: A Pilot Biomonitoring Study near a Sugarcane Mill
by Oliver Mendoza-Cano, Agustin Lugo-Radillo, Mónica Ríos-Silva, Irma Elizabeth Gonzalez-Curiel, Jaime Alberto Bricio-Barrios, Arlette A. Camacho-delaCruz, María Fernanda Romo-García, Herguin Benjamín Cuevas-Arellano, Ana Luz Quintanilla-Montoya, Ramón Solano-Barajas, Juan Manuel Uribe-Ramos, Luis A. García-Solórzano, Ángel Gabriel Hilerio-López, Alma Alejandra Solano-Mendoza, Rogelio Danis-Romero and Efrén Murillo-Zamora
Toxics 2024, 12(6), 426; https://doi.org/10.3390/toxics12060426 - 12 Jun 2024
Viewed by 332
Abstract
Sugarcane production has been linked to the release of heavy metals and metalloids (HM/MTs) into the environment, raising concerns about potential health risks. This study aimed to assess the levels of 19 HM/MTs in children living near a sugarcane mill through a pilot [...] Read more.
Sugarcane production has been linked to the release of heavy metals and metalloids (HM/MTs) into the environment, raising concerns about potential health risks. This study aimed to assess the levels of 19 HM/MTs in children living near a sugarcane mill through a pilot biomonitoring investigation. We investigated sex-related differences in these element levels and their correlations. A cross-sectional study was conducted, analyzing data from 20 children in the latter part of 2023. Spearman correlation coefficients with 95% confidence intervals (CIs) were used to assess the relationships between urinary HM/MT levels. Detectable levels of 17 out of the 19 HM/MTs were found across the entire study sample, with arsenic and copper detectable in 95% of the children. Titanium exhibited higher levels in boys compared to girls (p = 0.017). We identified 56 statistically significant correlations, with 51 of them being positive, while the remaining coefficients indicated negative relationships. This study characterized HM/MT levels in school-aged children residing near a sugarcane mill through a pilot biomonitoring investigation. Further research employing larger sample sizes and longitudinal assessments would enhance our understanding of the dynamics and health impacts of HM/MT exposure in this vulnerable population. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

9 pages, 694 KiB  
Article
Models for the No-Observed-Effect Concentration (NOEC) and Maximal Half-Effective Concentration (EC50)
by Nadia Iovine, Alla P. Toropova, Andrey A. Toropov, Alessandra Roncaglioni and Emilio Benfenati
Toxics 2024, 12(6), 425; https://doi.org/10.3390/toxics12060425 - 12 Jun 2024
Viewed by 148
Abstract
Typical in silico models for ecotoxicology focus on a few endpoints, but there is a need to increase the diversity of these models. This study proposes models using the NOEC for the harlequin fly (Chironomus riparius) and EC50 for swollen duckweed [...] Read more.
Typical in silico models for ecotoxicology focus on a few endpoints, but there is a need to increase the diversity of these models. This study proposes models using the NOEC for the harlequin fly (Chironomus riparius) and EC50 for swollen duckweed (Lemna gibba) for the first time. The data were derived from the EFSA OpenFoodTox database. The models were based on the correlation weights of molecular features used to calculate the 2D descriptor in CORAL software. The Monte Carlo method was used to calculate the correlation weights of the algorithms. The determination coefficients of the best models for the external validation set were 0.74 (NOAEC) and 0.85 (EC50). Full article
(This article belongs to the Special Issue New Models and Applications in Predictive Toxicology)
9 pages, 491 KiB  
Communication
The Development of a Rapid, Cost-Effective, and Green Analytical Method for Mercury Speciation
by Patrícia Cristina Costa Ladeira, Caroline Cristine Augusto, Bruno Alves Rocha, Jairo Lisboa Rodrigues, Giovanna de Fátima Moreno Aguiar and Bruno Lemos Batista
Toxics 2024, 12(6), 424; https://doi.org/10.3390/toxics12060424 - 11 Jun 2024
Viewed by 238
Abstract
Mercury is a naturally occurring metal found in various inorganic and organic forms within the environment. Due to its high toxicity, there is global concern regarding human exposure to this element. The combination of high-performance liquid chromatography and inductively coupled plasma mass spectrometry [...] Read more.
Mercury is a naturally occurring metal found in various inorganic and organic forms within the environment. Due to its high toxicity, there is global concern regarding human exposure to this element. The combination of high-performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS) is commonly used to analyze the different forms of mercury in a sample due to its high sensitivity and ability to selectively detect mercury. However, the traditional HPLC-ICP-MS methods are often criticized for their lengthy analysis times. In this study, we have refined the conventional approach by transitioning to ultra-high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (UHPLC-ICP-MS). This modification has resulted in significant reductions in runtime as well as reagent and argon usage, thereby offering a more rapid, environmentally friendly, and cost-effective method. We successfully adapted an HPLC-ICP-MS method to UHPLC-ICP-MS, achieving the analysis of Hg2+ and MeHg+ within 1 min with a mobile phase consumption of only 0.5 mL and a sample volume of 5.0 µL; this is a major advance compared to HPLC analysis with run times generally between 5 and 10 min. The method’s performance was assessed by analyzing muscle and liver tissue samples (serving as reference material) from fish, demonstrating the versatility of the method in relation to different complex matrices. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
14 pages, 2323 KiB  
Article
Shift in Bacterial Community Structure in the Biodegradation of Benzene and Toluene under Sulfate-Reducing Condition
by Zhengwei Liu, Xiaoyu Lin, Xinzhe Wang, Mingbo Sun, Shici Ma and Shucai Zhang
Toxics 2024, 12(6), 423; https://doi.org/10.3390/toxics12060423 - 10 Jun 2024
Viewed by 277
Abstract
Groundwater contaminated by benzene and toluene is a common issue, posing a threat to the ecosystems and human health. The removal of benzene and toluene under sulfate-reducing condition is well known, but how the bacterial community shifts during this process remains unclear. This [...] Read more.
Groundwater contaminated by benzene and toluene is a common issue, posing a threat to the ecosystems and human health. The removal of benzene and toluene under sulfate-reducing condition is well known, but how the bacterial community shifts during this process remains unclear. This study aims to evaluate the shift in bacterial community structure during the biodegradation of benzene and toluene under sulfate-reducing condition. In this study, groundwater contaminated with benzene and toluene were collected from the field and used to construct three artificial samples: Control (benzene 50 mg/L, toluene 1.24 mg/L, sulfate 470 mg/L, and HgCl2 250 mg/L), S1 (benzene 50 mg/L, toluene 1.24 mg/L, sulfate 470 mg/L), and S2 (benzene 100 mg/L, toluene 2.5 mg/L, sulfate 940 mg/L). The contaminants (benzene and toluene), geochemical parameters (sulfate, ORP, and pH), and bacterial community structure in the artificial samples were monitored over time. By the end of this study (day 90), approximately 99% of benzene and 96% of toluene could be eliminated in both S1 and S2 artificial samples, while in the Control artificial sample the contaminant levels remained unchanged due to microbial inactivation. The richness of bacterial communities initially decreased but subsequently increased over time in both S1 and S2 artificial samples. Under sulfate-reducing condition, key players in benzene and toluene degradation were identified as Pseudomonas, Janthinobacterium, Novosphingobium, Staphylococcus, and Bradyrhizobium. The results could provide scientific basis for remediation and risk management strategies at the benzene and toluene contaminated sites Full article
(This article belongs to the Special Issue Environmental Transport and Transformation of Pollutants)
22 pages, 2910 KiB  
Article
Characterization of Wildland Firefighters’ Exposure to Coarse, Fine, and Ultrafine Particles; Polycyclic Aromatic Hydrocarbons; and Metal(loid)s, and Estimation of Associated Health Risks
by Joana Teixeira, Gabriel Sousa, Rui Azevedo, Agostinho Almeida, Cristina Delerue-Matos, Xianyu Wang, Alice Santos-Silva, Francisca Rodrigues and Marta Oliveira
Toxics 2024, 12(6), 422; https://doi.org/10.3390/toxics12060422 - 10 Jun 2024
Viewed by 366
Abstract
Firefighters’ occupational activity causes cancer, and the characterization of exposure during firefighting activities remains limited. This work characterizes, for the first time, firefighters’ exposure to (coarse/fine/ultrafine) particulate matter (PM) bound polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s during prescribed fires, Fire 1 and Fire [...] Read more.
Firefighters’ occupational activity causes cancer, and the characterization of exposure during firefighting activities remains limited. This work characterizes, for the first time, firefighters’ exposure to (coarse/fine/ultrafine) particulate matter (PM) bound polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s during prescribed fires, Fire 1 and Fire 2 (210 min). An impactor collected 14 PM fractions, the PM levels were determined by gravimetry, and the PM-bound PAHs and metal(loid)s were determined by chromatographic and spectroscopic methodologies, respectively. Firefighters were exposed to a total PM level of 1408.3 and 342.5 µg/m3 in Fire 1 and Fire 2, respectively; fine/ultrafine PM represented more than 90% of total PM. Total PM-bound PAHs (3260.2 ng/m3 in Fire 1; 412.1 ng/m3 in Fire 2) and metal(loid)s (660.8 ng/m3 versus 262.2 ng/m3), distributed between fine/ultrafine PM, contained 4.57–24.5% and 11.7–12.6% of (possible/probable) carcinogenic PAHs and metal(loid)s, respectively. Firefighters’ exposure to PM, PAHs, and metal(loid)s were below available occupational limits. The estimated carcinogenic risks associated with the inhalation of PM-bound PAHs (3.78 × 10−9 − 1.74 × 10−6) and metal(loid)s (1.50 × 10−2 − 2.37 × 10−2) were, respectively, below and 150–237 times higher than the acceptable risk level defined by the USEPA during 210 min of firefighting activity and assuming a 40-year career as a firefighter. Additional studies need to (1) explore exposure to (coarse/fine/ultrafine) PM, (2) assess health risks, (3) identify intervention needs, and (4) support regulatory agencies recommending mitigation procedures to reduce the impact of fire effluents on firefighters. Full article
(This article belongs to the Special Issue Firefighters’ Occupational Exposures and Health Risks)
Show Figures

Graphical abstract

13 pages, 717 KiB  
Review
Inflammatory Bowel Disease Therapies and Acute Liver Injury
by Roberto Catanzaro, Francesco Marotta, Azam Yazdani and Morena Sciuto
Toxics 2024, 12(6), 421; https://doi.org/10.3390/toxics12060421 - 8 Jun 2024
Viewed by 262
Abstract
Drug-induced liver disease (DILI) represents one of the main problems in the therapeutic field. There are several non-modifiable risk factors, such as age and sex, and all drugs can cause hepatotoxicity of varying degrees, including those for the treatment of inflammatory bowel diseases [...] Read more.
Drug-induced liver disease (DILI) represents one of the main problems in the therapeutic field. There are several non-modifiable risk factors, such as age and sex, and all drugs can cause hepatotoxicity of varying degrees, including those for the treatment of inflammatory bowel diseases (IBD). The aim of this review is to illustrate the adverse effects on the liver of the various drugs used in the treatment of IBD, highlighting which drugs are safest to use based on current knowledge. The mechanism by which drugs cause hepatotoxicity is not fully understood. A possible cause is represented by the formation of toxic metabolites, which in some patients may be increased due to alterations in the enzymatic apparatus involved in drug metabolism. Various studies have shown that the drugs that can most frequently cause hepatotoxicity are immunosuppressants, while mesalazine and biological drugs are, for the most part, less associated with such complications. Therefore, it is possible to assume that in the future, biological therapies could become the first line for the treatment of IBD. Full article
(This article belongs to the Special Issue Human Toxicology and Metabolic Disease with Exposure to Drugs)
Show Figures

Figure 1

13 pages, 1907 KiB  
Article
Transgenerational Response of Germline Nuclear Hormone Receptor Genes to Nanoplastics at Predicted Environmental Doses in Caenorhabditis elegans
by Zhengying Liu, Yuxing Wang, Qian Bian and Dayong Wang
Toxics 2024, 12(6), 420; https://doi.org/10.3390/toxics12060420 - 7 Jun 2024
Viewed by 297
Abstract
Transgenerational nanoplastic toxicity could be detected in Caenorhabditis elegans after exposure at the parental generation (P0-G); however, the underlying mechanisms remain largely unclear. We aimed to examine the role of germline nuclear hormone receptors (NHRs) in controlling the transgenerational toxicity of polystyrene nanoparticles [...] Read more.
Transgenerational nanoplastic toxicity could be detected in Caenorhabditis elegans after exposure at the parental generation (P0-G); however, the underlying mechanisms remain largely unclear. We aimed to examine the role of germline nuclear hormone receptors (NHRs) in controlling the transgenerational toxicity of polystyrene nanoparticles (PS-NPs) based on gene expression screening and functional analysis. Among germline NHR genes, daf-12, nhr-14, and nhr-47 expressions were increased and nhr-12 expression was decreased by PS-NPs (1 and 10 μg/L). Transgenerational alterations in expressions of these four NHR genes were also induced by PS-NPs (1 and 10 μg/L). RNAi of daf-12, nhr-14, and nhr-47 caused resistance, whereas RNAi of nhr-12 conferred susceptibility to transgenerational PS-NP toxicity. After PS-NP exposure, expressions of ins-3, daf-28, and ins-39 encoding insulin ligands, efn-3 encoding Ephrin ligand, and lin-44 encoding Wnt ligand, as well as expressions of their receptor genes (daf-2, vab-1, and/or mig-1), were dysregulated by the RNAi of daf-12, nhr-14, nhr-47, and nhr-12. Therefore, alteration in certain germline NHRs could mediate the induction of transgenerational nanoplastic toxicity by affecting secreted ligands and their receptors in the offspring of exposed organisms. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
17 pages, 3972 KiB  
Article
Effective Technique and Mechanism for Simultaneous Adsorption of As(III/V) from Wastewater by Fe-ZIF-8@MXene
by Shuyan Zang, Qing Zhang, Baoli Hu, Yaqian Zhang, Jaan H. Pu and Meiheng Lv
Toxics 2024, 12(6), 419; https://doi.org/10.3390/toxics12060419 - 7 Jun 2024
Viewed by 227
Abstract
Arsenic (As) contamination of surface water has become a global concern, especially for the third world countries, and it is imperative to develop advanced materials and an effective treatment method to address the issue. In this paper, iron doped ZIF-8@MXene (Fe-ZIF-8@MXene) was prepared [...] Read more.
Arsenic (As) contamination of surface water has become a global concern, especially for the third world countries, and it is imperative to develop advanced materials and an effective treatment method to address the issue. In this paper, iron doped ZIF-8@MXene (Fe-ZIF-8@MXene) was prepared as a potential adsorbent to effectively and simultaneously remove As(III/V) from wastewater. To investigate this, Fe-ZIF-8@MXene was characterized before and after the removal of mixed As(III/V). The results of Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), specific surface area (BET) and point of zero charge (pHpzc) showed that Fe-ZIF-8@MXene was prepared successfully and kept a stable structure after As(III) and As(V) adsorption. The particle size of Fe-ZIF-8@MXene was in the range of 0.5 μm to 2.5 μm, where its BET was 531.7 m2/g. For both contaminants, adsorption was found to follow pseudo-second-order kinetics and was best-fitted by the Langmuir adsorption model with correlation coefficients (R2) of 0.998 and 0.997, for As(III) and As(V), respectively. The adsorbent was then applied to remove As from two actual water samples, giving maximum removal rates of 91.07% and 98.96% for As(III) and As(V), respectively. Finally, removal mechanisms for As(III/V) by Fe-ZIF-8@MXene were also explored. During the adsorption, multiple complexes were formed under the effect of its abundant surface functional groups involving multiple mechanisms, which included Van der Waals force, surface adsorption, chemical complexation and electrostatic interactions. In conclusion, this study demonstrated that Fe-ZIF-8@MXene was an advanced and reusable material for simultaneous removal of As(III/V) in wastewater. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
12 pages, 1378 KiB  
Article
Effects of Foliar Spraying of Dicarboxylicdimethylammonium Chloride on Cadmium and Arsenic Accumulation in Rice Grains
by Lin Fu, Jiawei Deng, Dayliana Ruiz Lao, Changbo Zhang, Weijie Xue, Yun Deng and Xin Luo
Toxics 2024, 12(6), 418; https://doi.org/10.3390/toxics12060418 - 7 Jun 2024
Viewed by 248
Abstract
A field experiment with double cropping rice was carried out to study the foliar application effects of dicarboxylicdimethylammonium chloride (DDAC) on cadmium (Cd) and arsenic (As) accumulation in rice grains. The results showed that the spraying of DDAC could significantly reduce the accumulation [...] Read more.
A field experiment with double cropping rice was carried out to study the foliar application effects of dicarboxylicdimethylammonium chloride (DDAC) on cadmium (Cd) and arsenic (As) accumulation in rice grains. The results showed that the spraying of DDAC could significantly reduce the accumulation of Cd and As in rice grains. The highest reductions in Cd and As content were observed when 1.5 mmol L−1 DDAC was sprayed, with 49.1% and 27.4% reductions in Cd and As content in early rice grains and 56.5% and 28.1% reductions in Cd and As content in late rice grains, respectively. In addition, the content of calcium (Ca) in rice grains increased significantly after DDAC foliar application, which was also conducive to the synthesis of amino acids such as glutamate (Glu), glycine (Gly) and cysteine (Cys) in rice grains. The results indicated that the foliar spraying of DDAC can inhibit the absorption, transport, accumulation and toxicity of Cd and As in rice grains by increasing amino acid synthesis and regulating the absorption and transport of essential elements. Full article
11 pages, 1187 KiB  
Article
Mercury Dynamics in the Sea of Azov: Insights from a Mass Balance Model
by Christoph Gade, Rebecca von Hellfeld, Lenka Mbadugha and Graeme Paton
Toxics 2024, 12(6), 417; https://doi.org/10.3390/toxics12060417 - 7 Jun 2024
Viewed by 374
Abstract
The Sea of Azov, an inland shelf sea bounding Ukraine and Russia, experiences the effects of ongoing and legacy pollution. One of the main contaminants of concern is the heavy metal mercury (Hg), which is emitted from the regional coal industry, former Hg [...] Read more.
The Sea of Azov, an inland shelf sea bounding Ukraine and Russia, experiences the effects of ongoing and legacy pollution. One of the main contaminants of concern is the heavy metal mercury (Hg), which is emitted from the regional coal industry, former Hg refineries, and the historic use of mercury-containing pesticides. The aquatic biome acts both as a major sink and source in this cycle, thus meriting an examination of its environmental fate. This study collated existing Hg data for the SoA and the adjacent region to estimate current Hg influxes and cycling in the ecosystem. The mercury-specific model “Hg Environmental Ratios Multimedia Ecosystem Sources” (HERMES), originally developed for Canadian freshwater lakes, was used to estimate anthropogenic emissions to the sea and regional atmospheric Hg concentrations. The computed water and sediment concentrations (6.8 ng/L and 55.7 ng/g dw, respectively) approximate the reported literature values. The ongoing military conflict will increase environmental pollution in the region, thus further intensifying the existing (legacy) anthropogenic pressures. The results of this study provide a first insight into the environmental Hg cycle of the Sea of Azov ecosystem and underline the need for further emission control and remediation efforts to safeguard environmental quality. Full article
(This article belongs to the Special Issue Monitoring and Assessment of Mercury Pollution)
Show Figures

Graphical abstract

12 pages, 1257 KiB  
Article
The Concentration of Benzo[a]pyrene in Food Cooked by Air Fryer and Oven: A Comparison Study
by Xiaoxin Chen, Yingxin Liao, Baiwen Lin, Xing He, Sibei Li, Chenghui Zhong, Saifeng Li, Yun Zhou and Lieyang Fan
Toxics 2024, 12(6), 416; https://doi.org/10.3390/toxics12060416 - 6 Jun 2024
Viewed by 310
Abstract
The air fryer utilizes heated air rather than hot oil to achieve frying, eliminating the need for cooking oil, rendering it a healthier cooking method than traditional frying and baking. However, there is limited evidence supporting that the air fryer could effectively reduce [...] Read more.
The air fryer utilizes heated air rather than hot oil to achieve frying, eliminating the need for cooking oil, rendering it a healthier cooking method than traditional frying and baking. However, there is limited evidence supporting that the air fryer could effectively reduce the level of food-derived carcinogen. In this study, we compared the concentration of Benzo[a]pyrene (BaP), a typical carcinogen, in beef patties cooked using an air fryer and an oven, under different cooking conditions, including temperatures (140 °C, 160 °C, 180 °C, and 200 °C), times (9, 14, and 19 min), and oil added or not. The adjusted linear regression analysis revealed that the BaP concentration in beef cooked in the air fryer was 22.667 (95% CI: 15.984, 29.349) ng/kg lower than that in beef cooked in the oven. Regarding the air fryer, the BaP concentration in beef cooked without oil brushing was below the detection limit, and it was significantly lower than in beef cooked with oil brushing (p < 0.001). Therefore, cooking beef in the air fryer can effectively reduce BaP concentration, particularly due to the advantage of oil-free cooking, suggesting that the air fryer represents a superior option for individuals preparing meat at high temperatures. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

29 pages, 585 KiB  
Review
Non-Steroidal Anti-Inflammatory Drugs in the Aquatic Environment and Bivalves: The State of the Art
by Pedro Pires, André M. P. T. Pereira, Angelina Pena and Liliana J. G. Silva
Toxics 2024, 12(6), 415; https://doi.org/10.3390/toxics12060415 - 5 Jun 2024
Viewed by 276
Abstract
In recent years, contaminants of emerging concern have been reported in several environmental matrices due to advances in analytical methodologies. These anthropogenic micropollutants are detected at residual levels, representing an ecotoxicological threat to aquatic ecosystems. In particular, the pharmacotherapeutic group of non-steroidal anti-inflammatories [...] Read more.
In recent years, contaminants of emerging concern have been reported in several environmental matrices due to advances in analytical methodologies. These anthropogenic micropollutants are detected at residual levels, representing an ecotoxicological threat to aquatic ecosystems. In particular, the pharmacotherapeutic group of non-steroidal anti-inflammatories (NSAIDs) is one of the most prescribed and used, as well as one of the most frequently detected in the aquatic environment. Bivalves have several benefits as a foodstuff, and also as an environment bioindicator species. Therefore, they are regarded as an ideal tool to assess this issue from both ecotoxicological and food safety perspectives. Thus, the control of these residues in bivalves is extremely important to safeguard environmental health, also ensuring food safety and public health. This paper aims to review NSAIDs in bivalves, observing their consumption, physicochemical characteristics, and mechanisms of action; their environmental occurrence in the aquatic environment and aquatic biota; and their effects on the ecosystem and the existent legal framework. A review of the analytical methodologies for the determination of NSAIDs in bivalves is also presented. Full article
11 pages, 308 KiB  
Article
Biogas Digestate and Sewage Sludge as Suitable Feeds for Black Soldier Fly (Hermetia illucens) Larvae
by Jana Kofroňová, Abir Melliti and Radek Vurm
Toxics 2024, 12(6), 414; https://doi.org/10.3390/toxics12060414 - 5 Jun 2024
Viewed by 345
Abstract
Hermetia illucens larvae can use organic wastes as a substrate, which makes them an interesting potential feed. However, waste may contain heavy metals, which are limited in feed. Here, we investigated the ability of H. illucens to grow on organic wastes and measured [...] Read more.
Hermetia illucens larvae can use organic wastes as a substrate, which makes them an interesting potential feed. However, waste may contain heavy metals, which are limited in feed. Here, we investigated the ability of H. illucens to grow on organic wastes and measured their heavy metal bioaccumulation. The larvae were fed with food waste, biogas digestates, and sewage sludge. When the first adult fly was visible, the tests were stopped and the larvae immediately processed. The samples (wastes before use, larvae after feeding) were analysed for mineral nutrient and heavy metal content using AAS and ICP-OES, respectively. The results show that the weight of the larvae fed with food waste increased sevenfold, which was broadly in line with expectations. Those fed with sewage sludge and digestate from biogas station increased threefold. While the larvae fed with sewage sludge exceeded the limits for heavy metals, particularly Cd and Pb, in feedstock, those fed with biogas digestate and food waste did not. These findings add to the literature showing the suitability of different wastes as H. illucens feed, and the importance of excluding waste contaminated with heavy metals from larvae intended for use as animal feed, or else diverting these larvae to non-feed uses. Full article
(This article belongs to the Special Issue Bioremediation of Pollutants in Sewage Sludge)
14 pages, 3285 KiB  
Article
Effects of Freeze-Thaw Cycles on Bioaccessibilities of Polycyclic Aromatic Hydrocarbons
by Hui Dong and Ze Wu
Toxics 2024, 12(6), 413; https://doi.org/10.3390/toxics12060413 - 5 Jun 2024
Viewed by 327
Abstract
The bioaccessibility of particle-bound hydrophobic organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs), and the factors influencing their re-release are crucial for assessing potential human health risks via inhalation and hand-mouth exposure. However, the mechanisms by which various factors affect the re-release of [...] Read more.
The bioaccessibility of particle-bound hydrophobic organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs), and the factors influencing their re-release are crucial for assessing potential human health risks via inhalation and hand-mouth exposure. However, the mechanisms by which various factors affect the re-release of PAHs in body fluids, particularly in response to environmental changes like freeze-thaw cycles, remain unclear. To obtain a better understanding, an in vitro method was employed to investigate the re-release processes of PAHs from different soil types (ferrallitic soil and calcareous soil) in simulated body fluids (simulated lung fluid and simulated saliva) under varying freeze-thaw conditions (0, 15, and 30 cycles). The findings indicated that the bioaccessibilities of phenanthrene and pyrene decreased with the frequency of freeze-thaw cycles, which were constrained by soil nature and simulated body fluids compositions as well. Additionally, this study observed that the portion of reversible adsorption of PAHs declined after exposure to freeze-thaw cycles in a nonlinear manner, suggesting that the potential human health risk associated with PAHs could be mitigated due to the “aging effect” which occurred as PAHs became less bioaccessible over time. These results underscore the importance of considering the characteristics of pollutants, body fluids, and environmental media when conducting a precise assessment of the human health risks posed by such contaminants. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

16 pages, 20893 KiB  
Article
Degradation of Sodium Acetate by Catalytic Ozonation Coupled with MnOx/NiOOH-Modified Fly Ash
by Ruifu Chen, Hao Zhang, Shengyu Shao, Huajun Xu, Kaicheng Zhou, Yinzhi Jiang and Pengfei Sun
Toxics 2024, 12(6), 412; https://doi.org/10.3390/toxics12060412 - 4 Jun 2024
Viewed by 313
Abstract
Fly ash, a type of solid waste generated in power plants, can be utilized as a catalyst carrier to enhance its value-added potential. Common methods often involve using a large amount of alkali for preprocessing, resulting in stable quartz and mullite forming silicate [...] Read more.
Fly ash, a type of solid waste generated in power plants, can be utilized as a catalyst carrier to enhance its value-added potential. Common methods often involve using a large amount of alkali for preprocessing, resulting in stable quartz and mullite forming silicate dissolution. This leads to an increased specific surface area and pore structure. In this study, we produced a catalyst composed of MnOx/NiOOH supported on fly ash by directly employing nickel hydroxide and potassium permanganate to generate metal active sites over the fly ash surface while simultaneously creating a larger specific surface area and pore structure. The ozone catalytic oxidation performance of this catalyst was evaluated using sodium acetate as the target organic matter. The experimental results demonstrated that an optimal removal efficiency of 57.5% for sodium acetate was achieved, surpassing even that of MnOx/NiOOH supported catalyst by using γ-Al2O3. After loading of MnOx/NiOOH, an oxygen vacancy is formed on the surface of fly ash, which plays an indirect oxidation effect on sodium acetate due to the transformation of ozone to •O2 and •OH over this oxygen vacancy. The reaction process parameters, including varying concentrations of ozone, sodium acetate, and catalyst dosage, as well as pH value and the quantitative analysis of formed free radicals, were examined in detail. This work demonstrated that fly ash could be used as a viable catalytic material for wastewater treatment and provided a new solution to the added value of fly ash. Full article
(This article belongs to the Special Issue Effective Catalytic Processes for Water and Wastewater Treatment)
Show Figures

Figure 1

13 pages, 7680 KiB  
Article
Antibiotics in Surface Sediments from the Anning River in Sichuan Province, China: Occurrence, Distribution, and Risk Assessment
by Junlie Zhou, Jianglin Kang, Chunyan Lin, Qi Xu, Wanrong Yang, Ke Fan and Jinrong Li
Toxics 2024, 12(6), 411; https://doi.org/10.3390/toxics12060411 - 4 Jun 2024
Viewed by 221
Abstract
The occurrence, distribution, and ecological risk assessment of 36 antibiotics from five groups, including macrolides (MLs), fluoroquinolones (FQs), tetracyclines (TCs), amphenicols (APs), and sulfonamides (SAs), were investigated for the first time in the Anning River, Sichuan Province, China. The results show that antibiotics [...] Read more.
The occurrence, distribution, and ecological risk assessment of 36 antibiotics from five groups, including macrolides (MLs), fluoroquinolones (FQs), tetracyclines (TCs), amphenicols (APs), and sulfonamides (SAs), were investigated for the first time in the Anning River, Sichuan Province, China. The results show that antibiotics were widely present in the sediments of the Anning River, with a total of 22 antibiotics detected. FQs were among the most abundant antibiotics, followed by TCs, MLs, APs, and SAs. The total concentrations of antibiotics in surface sediments varied from 0.05 to 53.35 ng/g, with an average of 8.09 ng/g. Among these groups, MLs, FQs, and TCs emerged as the predominant classes of antibiotics. The midstream sediments showed the highest residual levels of antibiotics, with lower levels observed in the downstream and upstream sediments. Anthropogenic activities, such as human clinical practices and animal breeding, might be sources of antibiotics released into the river. An ecological risk assessment revealed that trimethoprim from the SA group exhibited high risks, and MLs showed medium risks in the Anning River, whereas most antibiotics presented minimal to low risks. This study provides valuable information on antibiotic pollution in the upstream region of the Yangtze River, and future management measures are needed for the Anning River. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

16 pages, 4279 KiB  
Article
Chronic Lead Exposure in Adult Mice: Associations with miR-671/CDR1as Regulation, NF-κB Signaling, and Alzheimer’s Disease-like Pathology
by Mengyun Qiao, Haitao Yang, Li Liu, Tao Yu, Haihua Wang, Xiao Chen, Yi Zhang, Airu Duan, Shujun Lyu, Siyu Wu, Jingwei Xiao and Bin Li
Toxics 2024, 12(6), 410; https://doi.org/10.3390/toxics12060410 - 4 Jun 2024
Viewed by 217
Abstract
Long-term exposure to lead (Pb) can result in chronic damage to the body through accumulation in the central nervous system (CNS) leading to neurodegenerative diseases, such as Alzheimer’s disease (AD). This study delves into the intricate role of miR-671/CDR1as regulation in the etiology [...] Read more.
Long-term exposure to lead (Pb) can result in chronic damage to the body through accumulation in the central nervous system (CNS) leading to neurodegenerative diseases, such as Alzheimer’s disease (AD). This study delves into the intricate role of miR-671/CDR1as regulation in the etiology of AD-like lesions triggered by chronic Pb exposure in adult mice. To emulate the chronic effects of Pb, we established a rodent model spanning 10 months of controlled Pb administration, dividing 52 C57BL/6J mice into groups receiving varying concentrations of Pb (1, 2, or 4 g/L) alongside an unexposed control. Blood Pb levels were monitored using serum samples to ensure accurate dosing and to correlate with observed toxicological outcomes. Utilizing the Morris water maze, a robust behavioral assay for assessing cognitive functions, we documented a dose-dependent decline in learning and memory capabilities among the Pb-exposed mice. Histopathological examination of the hippocampal tissue revealed tell-tale signs of AD-like neurodegeneration, characterized by the accumulation of amyloid plaques and neurofibrillary tangles. At the molecular level, a significant upregulation of AD-associated genes, namely amyloid precursor protein (APP), β-secretase 1 (BACE1), and tau, was observed in the hippocampal tissue of Pb-exposed mice. This was accompanied by a corresponding surge in the protein levels of APP, BACE1, amyloid-β (Aβ), and phosphorylated tau (p-tau), further implicating Pb in the dysregulation of these key AD markers. The expression of CDR1as, a long non-coding RNA implicated in AD pathogenesis, was found to be suppressed in Pb-exposed mice. This observation suggests a potential mechanistic link between Pb-induced neurotoxicity and the dysregulation of the CDR1as/miR-671 axis, which warrants further investigation. Moreover, our study identified a dose-dependent alteration in the intracellular and extracellular levels of the transcription factor nuclear factor-kappa B (NF-κB). This finding implicates Pb in the modulation of NF-κB signaling, a pathway that plays a pivotal role in neuroinflammation and neurodegeneration. In conclusion, our findings underscored the deleterious effects of Pb exposure on the CNS, leading to the development of AD-like pathology. The observed modulation of NF-κB signaling and miR-671/CDR1as regulation provides a plausible mechanistic framework for understanding the neurotoxic effects of Pb and its potential contribution to AD pathogenesis. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

12 pages, 1829 KiB  
Article
Leukocyte Telomere Length Mediates the Associations between Blood Lead and Cadmium with Hypertension among Adults in the United States: A Cross-Sectional Study
by Changping Ouyang, Yinan Yang, Jinhua Pan, Heming Liu, Xuemei Wang, Shengze Zhou, Xiaoru Shi, Yanxia Zhang, Dan Wang and Xiaobin Hu
Toxics 2024, 12(6), 409; https://doi.org/10.3390/toxics12060409 - 3 Jun 2024
Viewed by 142
Abstract
There is evidence to support the links between lead and cadmium exposure with hypertension and also with leukocyte telomere length (LTL). The objective of this study is to investigate the role that LTL may play in the relationship between lead and cadmium exposure [...] Read more.
There is evidence to support the links between lead and cadmium exposure with hypertension and also with leukocyte telomere length (LTL). The objective of this study is to investigate the role that LTL may play in the relationship between lead and cadmium exposure and hypertension. This study consisted of 3718 participants from the National Health and Nutrition Examination Survey (NHANES) 1999–2002. Logistic regression was used to analyze the relationship between blood metals with hypertension, and the mediating model was used to evaluate the mediating effect of LTL. In the fully adjusted model, both blood lead and cadmium ln-transformed concentrations were significantly positively associated with hypertension risk, as were all quartiles of blood lead. Additionally, we observed positive linear dose–response relationships with hypertension by restricted cubic spline analysis (both p overall < 0.001, p non-linear = 0.3008 for lead and p non-linear = 0.7611 for cadmium). The ln-transformed blood lead and cadmium concentrations were associated with shorter LTL. LTL was inversely related to hypertension and the OR was 0.65 (95% CI: 0.47 to 0.89). Furthermore, LTL had mediating effects on the associations of blood lead and cadmium with hypertension risk, and the mediation proportions were 2.25% and 4.20%, respectively. Our findings suggested that exposure to lead and cadmium raised the risk of hypertension, while LTL played as a mediating factor. Full article
Show Figures

Figure 1

11 pages, 1800 KiB  
Article
Microfibers in the Diet of a Highly Aerial Bird, the Common Swift Apus apus
by Alessandra Costanzo, Roberto Ambrosini, Milo Manica, Daniela Casola, Carlo Polidori, Valentina Gianotti, Eleonora Conterosito, Maddalena Roncoli, Marco Parolini and Beatrice De Felice
Toxics 2024, 12(6), 408; https://doi.org/10.3390/toxics12060408 - 3 Jun 2024
Viewed by 165
Abstract
Microplastic pollution is a pervasive global issue affecting various ecosystems. Despite the escalating production and well-documented contamination in both aquatic and terrestrial environments, the research focused on airborne microplastics and their interaction with terrestrial birds remains limited. In this study, we collected fecal [...] Read more.
Microplastic pollution is a pervasive global issue affecting various ecosystems. Despite the escalating production and well-documented contamination in both aquatic and terrestrial environments, the research focused on airborne microplastics and their interaction with terrestrial birds remains limited. In this study, we collected fecal sacs from Common swifts (Apus apus) to investigate their diet and to evaluate the potential ingestion of microplastics by both adults and nestlings. The diet was mainly composed of Hymenoptera and Coleoptera and did not differ among sexes and age classes. The 33% of nestlings’ and 52% of adults’ fecal sacs contained anthropogenic items, the totality of which was in the shape form of fibers. The 19.4% of the anthropogenic items were chemically characterized as microplastics, either polyethylene terephthalate (PET; two microfibers) or cellophane (four microfibers). Airborne anthropogenic items, including microplastic, might be passively ingested during the Common swift aerial feeding. In addition, our findings suggest that these ingested microparticles have the potential to be transferred to the offspring through food. While further research is essential to elucidate the pathways of microplastic ingestion, our results reinforce the evidence of the transfer of anthropogenic items from the atmosphere to the biota. Full article
14 pages, 4631 KiB  
Article
TBHQ Alleviates Particulate Matter-Induced Pyroptosis in Human Nasal Epithelial Cells
by Ji-Sun Kim, Hyunsu Choi, Jeong-Min Oh, Sung Won Kim, Soo Whan Kim, Byung Guk Kim, Jin Hee Cho, Joohyung Lee and Dong Chang Lee
Toxics 2024, 12(6), 407; https://doi.org/10.3390/toxics12060407 - 3 Jun 2024
Viewed by 124
Abstract
Pyroptosis represents a type of cell death mechanism notable for its cell membrane disruption and the subsequent release of proinflammatory cytokines. The Nod-like receptor family pyrin domain containing inflammasome 3 (NLRP3) plays a critical role in the pyroptosis mechanism associated with various diseases [...] Read more.
Pyroptosis represents a type of cell death mechanism notable for its cell membrane disruption and the subsequent release of proinflammatory cytokines. The Nod-like receptor family pyrin domain containing inflammasome 3 (NLRP3) plays a critical role in the pyroptosis mechanism associated with various diseases resulting from particulate matter (PM) exposure. Tert-butylhydroquinone (tBHQ) is a synthetic antioxidant commonly used in a variety of foods and products. The aim of this study is to examine the potential of tBHQ as a therapeutic agent for managing sinonasal diseases induced by PM exposure. The occurrence of NLRP3 inflammasome-dependent pyroptosis in RPMI 2650 cells treated with PM < 4 µm in size was confirmed using Western blot analysis and enzyme-linked immunosorbent assay results for the pyroptosis metabolites IL-1β and IL-18. In addition, the inhibitory effect of tBHQ on PM-induced pyroptosis was confirmed using Western blot and immunofluorescence techniques. The inhibition of tBHQ-mediated pyroptosis was abolished upon nuclear factor erythroid 2-related factor 2 (Nrf2) knockdown, indicating its involvement in the antioxidant mechanism. tBHQ showed potential as a therapeutic agent for sinonasal diseases induced by PM because NLRP3 inflammasome activation was effectively suppressed via the Nrf2 pathway. Full article
(This article belongs to the Special Issue Air Pollutant Exposure and Respiratory Diseases)
Show Figures

Graphical abstract

18 pages, 910 KiB  
Article
Phytochemical Volatiles as Potential Bionematicides with Safer Ecotoxicological Properties
by Tomás Cavaco and Jorge M. S. Faria
Toxics 2024, 12(6), 406; https://doi.org/10.3390/toxics12060406 - 3 Jun 2024
Viewed by 207
Abstract
The management of plant-parasitic nematodes (PPNs) still relies on traditional nematicides that threaten the environment and human health. Novel solutions are urgently needed for PPN pest management that are effective while safeguarding non-target organisms. Volatile phytochemicals belong to a structurally diverse group of [...] Read more.
The management of plant-parasitic nematodes (PPNs) still relies on traditional nematicides that threaten the environment and human health. Novel solutions are urgently needed for PPN pest management that are effective while safeguarding non-target organisms. Volatile phytochemicals belong to a structurally diverse group of bioactive metabolites that are believed to hold safer environmental characteristics than synthetic pesticides. Nonetheless, not many studies have analysed the potential environmental benefits of shifting to these novel bionematicides. In the present study, 20 phytochemical volatiles with reported nematicidal activity were compared to traditional pesticides using specific parameters of environmental and human health safety available on applied online databases and predicted in silico through specialised software. Overall, the reviewed nematicidal phytochemicals were reportedly less toxic than synthetic nematicides. They were predicted to disperse to the air and soil environmental compartments and were reported to have a lower toxicity on aquatic organisms. On the contrary, the synthetic nematicides were reportedly toxic to aquatic organisms while showing a predicted high affinity to the water environmental compartment. As alternatives, β-keto or fatty acid derivatives, e.g., aliphatic alcohols or ketones, showed more adequate properties. This study highlights the importance of complementing studies on nematicidal activity with a risk assessment-based analysis to allow for a faster selection of nematicidal phytochemical volatiles and to leverage the development and implementation of bionematicides. Full article
Show Figures

Figure 1

24 pages, 1668 KiB  
Article
Advanced Photocatalytic Degradation of Cytarabine from Pharmaceutical Wastewaters
by Alexandra Berbentea, Mihaela Ciopec, Narcis Duteanu, Adina Negrea, Petru Negrea, Nicoleta Sorina Nemeş, Bogdan Pascu, Paula Svera (m. Ianasi), Cătălin Ianăşi, Daniel Marius Duda Seiman, Delia Muntean and Estera Boeriu
Toxics 2024, 12(6), 405; https://doi.org/10.3390/toxics12060405 - 31 May 2024
Viewed by 197
Abstract
The need to develop advanced wastewater treatment techniques and their use has become a priority, the main goal being the efficient removal of pollutants, especially those of organic origin. This study presents the photo-degradation of a pharmaceutical wastewater containing Kabi cytarabine, using ultraviolet [...] Read more.
The need to develop advanced wastewater treatment techniques and their use has become a priority, the main goal being the efficient removal of pollutants, especially those of organic origin. This study presents the photo-degradation of a pharmaceutical wastewater containing Kabi cytarabine, using ultraviolet (UV) radiation, and a synthesized catalyst, a composite based on bismuth and iron oxides (BFO). The size of the bandgap was determined by UV spectroscopy, having a value of 2.27 eV. The specific surface was determined using the BET method, having a value of 0.7 m2 g−1. The material studied for the photo-degradation of cytarabine presents a remarkable photo-degradation efficiency of 97.9% for an initial concentration 0f 10 mg/L cytarabine Kabi when 0.15 g of material was used, during 120 min of interaction with UV radiation at 3 cm from the irradiation source. The material withstands five photo-degradation cycles with good results. At the same time, through this study, it was possible to establish that pyrimidine derivatives could be able to combat infections caused by Escherichia coli and Candida parapsilosis. Full article
(This article belongs to the Special Issue Techniques and Methods for Toxic Agent Analysis and Removal)
15 pages, 411 KiB  
Article
Particulate Matter (PM) and Parent, Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbon (PAH) Emissions of Emulsified Heavy Fuel Oil in Marine Low-Speed Main Engine
by Penghao Su, Hanzhe Zhang, Liming Peng, Lihong Zhu, Tie Li, Xiaojia Tang and Yimin Zhu
Toxics 2024, 12(6), 404; https://doi.org/10.3390/toxics12060404 - 31 May 2024
Viewed by 259
Abstract
To understand the influences of emulsified fuel on ship exhaust emissions more comprehensively, the emissions of particulate matter (PM), nitrated, oxygenated and parent polycyclic aromatic hydrocarbons (PAHs) were studied on a ship main engine burning emulsified heavy fuel oil (EHFO) and heavy fuel [...] Read more.
To understand the influences of emulsified fuel on ship exhaust emissions more comprehensively, the emissions of particulate matter (PM), nitrated, oxygenated and parent polycyclic aromatic hydrocarbons (PAHs) were studied on a ship main engine burning emulsified heavy fuel oil (EHFO) and heavy fuel oil (HFO) as a reference. The results demonstrate that EHFO (emulsified heavy fuel oil) exhibits notable abilities to significantly reduce emissions of particulate matter (PM) and low molecular weight PAHs (polycyclic aromatic hydrocarbons) in the gas phase, particularly showcasing maximum reductions of 13.99% and 40.5%, respectively. Nevertheless, burning EHFO could increase the emission of high molecular weight PAHs in fine particles and pose a consequent higher carcinogenic risk for individual particles. The total average (gaseous plus particulate) ΣBEQ of EHFO exhausts (41.5 μg/m3) was generally higher than that of HFO exhausts (18.7 μg/m3). Additionally, the combustion of EHFO (extra-heavy fuel oil) can significantly alter the emission quantity, composition, and particle-size distribution of PAH derivatives. These changes may be linked to molecular structures, such as zigzag configurations in C=O bonds. Our findings may favor the comprehensive environmental assessments on the onboard application of EHFO. Full article
Previous Issue
Back to TopTop