Metabolites 2013, 3(3), 741-760; doi:10.3390/metabo3030741
Article

Integrative Analysis of Longitudinal Metabolomics Data from a Personal Multi-Omics Profile

Received: 8 June 2013; in revised form: 30 July 2013 / Accepted: 5 August 2013 / Published: 3 September 2013
(This article belongs to the Special Issue Integrative Metabolomics)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: The integrative personal omics profile (iPOP) is a pioneering study that combines genomics, transcriptomics, proteomics, metabolomics and autoantibody profiles from a single individual over a 14-month period. The observation period includes two episodes of viral infection: a human rhinovirus and a respiratory syncytial virus. The profile studies give an informative snapshot into the biological functioning of an organism. We hypothesize that pathway expression levels are associated with disease status. To test this hypothesis, we use biological pathways to integrate metabolomics and proteomics iPOP data. The approach computes the pathways’ differential expression levels at each time point, while taking into account the pathway structure and the longitudinal design. The resulting pathway levels show strong association with the disease status. Further, we identify temporal patterns in metabolite expression levels. The changes in metabolite expression levels also appear to be consistent with the disease status. The results of the integrative analysis suggest that changes in biological pathways may be used to predict and monitor the disease. The iPOP experimental design, data acquisition and analysis issues are discussed within the broader context of personal profiling.
Keywords: metabolomics; integrative pathway analysis; DEAP; dendrogram sharpening; DELSA; iPOP; longitudinal design; multi-omics data; single linkage.
PDF Full-text Download PDF Full-Text [1066 KB, uploaded 3 September 2013 16:53 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Stanberry, L.; Mias, G.I.; Haynes, W.; Higdon, R.; Snyder, M.; Kolker, E. Integrative Analysis of Longitudinal Metabolomics Data from a Personal Multi-Omics Profile. Metabolites 2013, 3, 741-760.

AMA Style

Stanberry L, Mias GI, Haynes W, Higdon R, Snyder M, Kolker E. Integrative Analysis of Longitudinal Metabolomics Data from a Personal Multi-Omics Profile. Metabolites. 2013; 3(3):741-760.

Chicago/Turabian Style

Stanberry, Larissa; Mias, George I.; Haynes, Winston; Higdon, Roger; Snyder, Michael; Kolker, Eugene. 2013. "Integrative Analysis of Longitudinal Metabolomics Data from a Personal Multi-Omics Profile." Metabolites 3, no. 3: 741-760.

Metabolites EISSN 2218-1989 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert