Next Article in Journal
Biofouling-Resistant Impedimetric Sensor for Array High-Resolution Extracellular Potassium Monitoring in the Brain
Next Article in Special Issue
A Novel MOS Nanowire Gas Sensor Device (S3) and GC-MS-Based Approach for the Characterization of Grated Parmigiano Reggiano Cheese
Previous Article in Journal
Biosensing with Paper-Based Miniaturized Printed Electrodes–A Modern Trend
Article Menu

Export Article

Open AccessCommunication
Biosensors 2016, 6(4), 52; doi:10.3390/bios6040052

Kinetics of Antibody Binding to Membranes of Living Bacteria Measured by a Photonic Crystal-Based Biosensor

Laboratoire de Physique de la Matière Vivante, IPHYS, École Polytechnique Fédérale de Lausanne (EPFL); Rte de la Sorge, 1015 Lausanne, Switzerland
*
Author to whom correspondence should be addressed.
Academic Editors: Olga Korostynska and Alex Mason
Received: 11 July 2016 / Revised: 31 August 2016 / Accepted: 28 September 2016 / Published: 11 October 2016
View Full-Text   |   Download PDF [2272 KB, uploaded 11 October 2016]   |  

Abstract

Optical biosensors based on photonic crystal surface waves (PC SWs) offer a possibility to study binding interactions with living cells, overcoming the limitation of rather small evanescent field penetration depth into a sample medium that is characteristic for typical optical biosensors. Besides this, simultaneous excitation of s- and p-polarized surface waves with different penetration depths is realized here, permitting unambiguous separation of surface and volume contributions to the measured signal. PC-based biosensors do not require a bulk signal correction, compared to widely used surface plasmon resonance-based devices. We developed a chitosan-based protocol of PC chip functionalization for bacterial attachment and performed experiments on antibody binding to living bacteria measured in real time by the PCSW-based biosensor. Data analysis reveals specific binding and gives the value of the dissociation constant for monoclonal antibodies (IgG2b) against bacterial lipopolysaccharides equal to KD = 6.2 ± 3.4 nM. To our knowledge, this is a first demonstration of antibody-binding kinetics to living bacteria by a label-free optical biosensor. View Full-Text
Keywords: photonic crystal; label-free biosensor; bacteria; binding kinetics; antibody; ligand-receptor interaction photonic crystal; label-free biosensor; bacteria; binding kinetics; antibody; ligand-receptor interaction
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Rostova, E.; Ben Adiba, C.; Dietler, G.; Sekatskii, S.K. Kinetics of Antibody Binding to Membranes of Living Bacteria Measured by a Photonic Crystal-Based Biosensor. Biosensors 2016, 6, 52.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Biosensors EISSN 2079-6374 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top