Next Article in Journal
Acknowledgement to Reviewers of Biosensors in 2013
Next Article in Special Issue
Sensing a Sensor: Identifying the Mechanosensory Function of Primary Cilia
Previous Article in Journal / Special Issue
Microfluidic Platform for the Elastic Characterization of Mouse Submandibular Glands by Atomic Force Microscopy
Biosensors 2014, 4(1), 28-44; doi:10.3390/bios4010028
Article

Micropatterning of 3D Microenvironments for Living Biosensor Applications

1,†
, 2,†
, 2
, 3
, 3
, 3
, 2
, 1
, 1
 and 1,*
Received: 24 December 2013; in revised form: 6 February 2014 / Accepted: 17 February 2014 / Published: 27 February 2014
(This article belongs to the Special Issue Sensors and Analytics for Cell Biology and Tissue Engineering)
View Full-Text   |   Download PDF [754 KB, uploaded 27 February 2014]   |   Browse Figures
Abstract: Micro-scale printing and patterning of living cells has multiple applications including tissue engineering, cell signaling assays, and the fabrication of cell-based biosensors. In this work, a molecular printing instrument, the Bioforce Nano eNabler, was modified to enable micron-scale “quill-pen” based printing of mammalian cells in a 3D hyaluronan/gelatin based hydrogel. Specifically, photo-initiated “thiol-ene” click chemistry was used to couple the thiol groups of thiolated hyaluronan/thiolated gelatin to the alkene groups of 4-arm polyethylene glycol (PEG)-norbornene molecules. Rapid photopolymerization enabled direct printing and controlled curing of living cells within the hydrogel matrix. The resulting hydrogels were biocompatible with human adipose-derived stem cells, NIH-3T3 cells, and mouse embryonic stem cells. The utility of this printing approach was also explored for cell-based biosensors. Micro-printed cells expressing a redox sensitive variant of the green fluorescent protein (roGFP-R12) showed a measurable fluorescent response to addition of oxidizing and then reducing agents. This work represents a novel approach to micron-scale cell patterning, and its potential for living, cell-based biosensors.
Keywords: microprinting; biosensor; hydrogel; reactive oxygen species; roGFP-R12; ROS; hyaluronan; hyaluronic acid; gelatin; PEG norbornene; Irgacure microprinting; biosensor; hydrogel; reactive oxygen species; roGFP-R12; ROS; hyaluronan; hyaluronic acid; gelatin; PEG norbornene; Irgacure
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Hynes, W.F.; Doty, N.J.; Zarembinski, T.I.; Schwartz, M.P.; Toepke, M.W.; Murphy, W.L.; Atzet, S.K.; Clark, R.; Melendez, J.A.; Cady, N.C. Micropatterning of 3D Microenvironments for Living Biosensor Applications. Biosensors 2014, 4, 28-44.

AMA Style

Hynes WF, Doty NJ, Zarembinski TI, Schwartz MP, Toepke MW, Murphy WL, Atzet SK, Clark R, Melendez JA, Cady NC. Micropatterning of 3D Microenvironments for Living Biosensor Applications. Biosensors. 2014; 4(1):28-44.

Chicago/Turabian Style

Hynes, William F.; Doty, Nate J.; Zarembinski, Thomas I.; Schwartz, Michael P.; Toepke, Michael W.; Murphy, William L.; Atzet, Sarah K.; Clark, Ryan; Melendez, J. A.; Cady, Nathaniel C. 2014. "Micropatterning of 3D Microenvironments for Living Biosensor Applications." Biosensors 4, no. 1: 28-44.


Biosensors EISSN 2079-6374 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert