Next Article in Journal
Removal of Radioactive Cesium Using Prussian Blue Magnetic Nanoparticles
Previous Article in Journal
Impact of the De-Alloying Kinetics and Alloy Microstructure on the Final Morphology of De-Alloyed Meso-Porous Metal Films
Previous Article in Special Issue
Inkjet Printing of Carbon Nanotubes
Article Menu

Export Article

Open AccessArticle
Nanomaterials 2014, 4(4), 879-893; doi:10.3390/nano4040879

Polymer Coating of Carbon Nanotube Fibers for Electric Microcables

Nanoworld Laboratories, University of Cincinnati, Cincinnati, OH 45221, USA
Chemical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
Mechanical Engineering and School of Dynamics, University of Cincinnati, Cincinnati, OH 45221, USA
College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
Physics Department, University of Cincinnati, Cincinnati, OH 45221, USA
Authors to whom correspondence should be addressed.
Received: 8 August 2014 / Revised: 7 October 2014 / Accepted: 28 October 2014 / Published: 4 November 2014
(This article belongs to the Special Issue CNT based Nanomaterials)
View Full-Text   |   Download PDF [983 KB, uploaded 4 November 2014]   |  


Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR) on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC), it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter—which is approximately four times the diameter of a red blood cell—is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core. View Full-Text
Keywords: carbon nanotubes (CNTs); coating; doping; microcable; densification carbon nanotubes (CNTs); coating; doping; microcable; densification

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Alvarez, N.T.; Ochmann, T.; Kienzle, N.; Ruff, B.; Haase, M.R.; Hopkins, T.; Pixley, S.; Mast, D.; Schulz, M.J.; Shanov, V. Polymer Coating of Carbon Nanotube Fibers for Electric Microcables. Nanomaterials 2014, 4, 879-893.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Nanomaterials EISSN 2079-4991 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top