Next Issue
Volume 5, March
Previous Issue
Volume 4, September
 
 

Nanomaterials, Volume 4, Issue 4 (December 2014) – 6 articles , Pages 844-916

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
441 KiB  
Article
Properties of An Oral Nanoformulation of A Molecularly Dispersed Amphotericin B Comprising A Composite Matrix of Theobroma Oil and Bee’S Wax
by Chloe See Wei Tan, Nashiru Billa, Clive J. Roberts and David J. Scurr
Nanomaterials 2014, 4(4), 905-916; https://doi.org/10.3390/nano4040905 - 19 Dec 2014
Cited by 7 | Viewed by 5726
Abstract
An amphotericin B-containing (AmB) solid lipid nanoparticulate drug delivery system intended for oral administration, comprised of bee’s wax and theobroma oil as lipid components was formulated with the aim to ascertain the location of AmB within the lipid matrix: (a) a homogenous matrix; [...] Read more.
An amphotericin B-containing (AmB) solid lipid nanoparticulate drug delivery system intended for oral administration, comprised of bee’s wax and theobroma oil as lipid components was formulated with the aim to ascertain the location of AmB within the lipid matrix: (a) a homogenous matrix; (b) a drug-enriched shell; or (c) a drug enriched core. Both the drug-loaded and drug-free nanoparticles were spherical with AmB contributing to an increase in both the z-average diameter (169 ± 1 to 222 ± 2 nm) and zeta potential (40.8 ± 0.9 to 50.3 ± 1.0 mV) of the nanoparticles. A maximum encapsulation efficiency of 21.4% ± 3.0%, corresponding to 10.7 ± 0.4 mg encapsulated AmB within the lipid matrix was observed. Surface analysis and electron microscopic imaging indicated that AmB was dispersed uniformly within the lipid matrix (option (a) above) and, therefore, this is the most suitable of the three models with regard to modeling the propensity for uptake by epithelia and release of AmB in lymph. Full article
Show Figures

Graphical abstract

101 KiB  
Editorial
Ordered Mesoporous Nanomaterials
by Eva Pellicer and Jordi Sort
Nanomaterials 2014, 4(4), 902-904; https://doi.org/10.3390/nano4040902 - 03 Dec 2014
Viewed by 4249
Abstract
The Special Issue of Nanomaterials “Ordered Mesoporous Nanomaterials” covers novel synthetic aspects of mesoporous materials and explores their use in diverse areas like drug delivery, photocatalysis, filtration or electrocatalysis. The range of materials tackled includes metals and alloys, aluminosilicates, silica, alumina and transition [...] Read more.
The Special Issue of Nanomaterials “Ordered Mesoporous Nanomaterials” covers novel synthetic aspects of mesoporous materials and explores their use in diverse areas like drug delivery, photocatalysis, filtration or electrocatalysis. The range of materials tackled includes metals and alloys, aluminosilicates, silica, alumina and transition metal oxides. The variety of materials, synthetic approaches and applications examined is vivid proof of the interest that mesoporous materials spark among researchers world-wide.[...] Full article
(This article belongs to the Special Issue Ordered Mesoporous Nanomaterials)
315 KiB  
Communication
Removal of Radioactive Cesium Using Prussian Blue Magnetic Nanoparticles
by Sung-Chan Jang, Sang-Bum Hong, Hee-Man Yang, Kune-Woo Lee, Jei-Kwon Moon, Bum-Kyoung Seo, Yun Suk Huh and Changhyun Roh
Nanomaterials 2014, 4(4), 894-901; https://doi.org/10.3390/nano4040894 - 28 Nov 2014
Cited by 61 | Viewed by 11195
Abstract
Radioactive cesium (137Cs) has inevitably become a human concern due to exposure from nuclear power plants and nuclear accident releases. Many efforts have been focused on removing cesium and the remediation of the contaminated environment. In this study, we elucidated the [...] Read more.
Radioactive cesium (137Cs) has inevitably become a human concern due to exposure from nuclear power plants and nuclear accident releases. Many efforts have been focused on removing cesium and the remediation of the contaminated environment. In this study, we elucidated the ability of Prussian blue-coated magnetic nanoparticles to eliminate cesium from radioactive contaminated waste. Thus, the obtained Prussian blue-coated magnetic nanoparticles were then characterized and examined for their physical and radioactive cesium adsorption properties. This Prussian blue-coated magnetic nanoparticle-based cesium magnetic sorbent can offer great potential for use in in situ remediation. Full article
(This article belongs to the Special Issue Advancements in Nanotoxicology)
Show Figures

Figure 1

983 KiB  
Article
Polymer Coating of Carbon Nanotube Fibers for Electric Microcables
by Noe T. Alvarez, Timothy Ochmann, Nicholas Kienzle, Brad Ruff, Mark R. Haase, Tracy Hopkins, Sarah Pixley, David Mast, Mark J. Schulz and Vesselin Shanov
Nanomaterials 2014, 4(4), 879-893; https://doi.org/10.3390/nano4040879 - 04 Nov 2014
Cited by 37 | Viewed by 10295
Abstract
Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT [...] Read more.
Carbon nanotubes (CNTs) are considered the most promising candidates to replace Cu and Al in a large number of electrical, mechanical and thermal applications. Although most CNT industrial applications require macro and micro size CNT fiber assemblies, several techniques to make conducting CNT fibers, threads, yarns and ropes have been reported to this day, and improvement of their electrical and mechanical conductivity continues. Some electrical applications of these CNT conducting fibers require an insulating layer for electrical insulation and protection against mechanical tearing. Ideally, a flexible insulator such as hydrogenated nitrile butadiene rubber (HNBR) on the CNT fiber can allow fabrication of CNT coils that can be assembled into lightweight, corrosion resistant electrical motors and transformers. HNBR is a largely used commercial polymer that unlike other cable-coating polymers such as polyvinyl chloride (PVC), it provides unique continuous and uniform coating on the CNT fibers. The polymer coated/insulated CNT fibers have a 26.54 μm average diameter—which is approximately four times the diameter of a red blood cell—is produced by a simple dip-coating process. Our results confirm that HNBR in solution creates a few microns uniform insulation and mechanical protection over a CNT fiber that is used as the electrically conducting core. Full article
(This article belongs to the Special Issue CNT based Nanomaterials)
Show Figures

Graphical abstract

4550 KiB  
Article
Impact of the De-Alloying Kinetics and Alloy Microstructure on the Final Morphology of De-Alloyed Meso-Porous Metal Films
by Bao Lin, Lingxue Kong, Peter D. Hodgson and Ludovic F. Dumée
Nanomaterials 2014, 4(4), 856-878; https://doi.org/10.3390/nano4040856 - 17 Oct 2014
Cited by 15 | Viewed by 8812
Abstract
Nano-textured porous metal materials present unique surface properties due to their enhanced surface energy with potential applications in sensing, molecular separation and catalysis. In this paper, commercial alloy foils, including brass (Cu85Zn15 and Cu70Zn30) and white [...] Read more.
Nano-textured porous metal materials present unique surface properties due to their enhanced surface energy with potential applications in sensing, molecular separation and catalysis. In this paper, commercial alloy foils, including brass (Cu85Zn15 and Cu70Zn30) and white gold (Au50Ag50) foils have been chemically de-alloyed to form nano-porous thin films. The impact of the initial alloy micro-structure and number of phases, as well as chemical de-alloying (DA) parameters, including etchant concentration, time and solution temperature on the final nano-porous thin film morphology and properties were investigated by electron microscopy (EM). Furthermore, the penetration depth of the pores across the alloys were evaluated through the preparation of cross sections by focus ion beam (FIB) milling. It is demonstrated that ordered pores ranging between 100 nm and 600 nm in diameter and 2–5 μm in depth can be successfully formed for the range of materials tested. The microstructure of the foils were obtained by electron back-scattered diffraction (EBSD) and linked to development of pits across the material thickness and surface during DA. The role of selective etching of both noble and sacrificial metal phases of the alloy were discussed in light of the competitive surface etching across the range of microstructures and materials tested. Full article
(This article belongs to the Special Issue Ordered Mesoporous Nanomaterials)
Show Figures

Figure 1

478 KiB  
Article
A Novel Method to Determine the Thermal Conductivity of Interfacial Layers Surrounding the Nanoparticles of a Nanofluid
by Rajinder Pal
Nanomaterials 2014, 4(4), 844-855; https://doi.org/10.3390/nano4040844 - 13 Oct 2014
Cited by 17 | Viewed by 5679
Abstract
Nanofluids are becoming increasingly popular as heat transfer fluids in a variety of industrial applications, due to their enhanced heat transfer characteristics. The thermal conductivity of nanofluids is usually found to be much larger than that predicted from the classical models, such as [...] Read more.
Nanofluids are becoming increasingly popular as heat transfer fluids in a variety of industrial applications, due to their enhanced heat transfer characteristics. The thermal conductivity of nanofluids is usually found to be much larger than that predicted from the classical models, such as the Maxwell model. The key mechanism of enhancement of thermal conductivity of dilute nanofluids is the solvation of nanoparticles with a layer of matrix liquid. As of now, little is known quantitatively about the thermal conductivity of the interfacial layers surrounding the nanoparticles. In this article, a novel method is presented to determine the thermal conductivity of the interfacial layers of the nanoparticles. The proposed method allows the estimation of the thermal conductivity of interfacial layers based on the combined measurements of the intrinsic viscosity and intrinsic thermal conductivity of a bulk nanofluid. From the measured intrinsic viscosity of the nanofluid, the thickness of the interfacial layer is estimated. Using the known interfacial layer thickness along with the measured intrinsic thermal conductivity of the nanofluid, the thermal conductivity of the interfacial layer is estimated. The proposed method is validated by simulation and experimental results. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop