Next Article in Journal
Medical Smart Textiles Based on Fiber Optic Technology: An Overview
Next Article in Special Issue
Injectable Amorphous Chitin-Agarose Composite Hydrogels for Biomedical Applications
Previous Article in Journal
Carbohydrate-Derived Amphiphilic Macromolecules: A Biophysical Structural Characterization and Analysis of Binding Behaviors to Model Membranes
Previous Article in Special Issue
Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials
Article Menu

Export Article

Open AccessArticle
J. Funct. Biomater. 2015, 6(2), 192-203; doi:10.3390/jfb6020192

Development of Thermosensitive Hydrogels of Chitosan, Sodium and Magnesium Glycerophosphate for Bone Regeneration Applications

1
Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
2
Faculty of Civil Environmental Engineering and Architecture, Rzeszow University of Technology, ul. Poznanska 2, Rzeszow 35-084, Poland
3
Polymer Chemistry and Biomaterials (PBM) Group, Department of Organic Chemistry, Ghent University, Krijgslaan 281 S4, Gent 9000, Belgium
4
Department Material Science & Engineering, Ghent University, Technologiepark 903, Zwijnaarde 9052, Belgium
5
Laboratory for Environmental and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Faculty of Bioscience Engineering, Ghent University, Jozef Plateaustraat 22, Gent 9000, Belgium
6
Department of Environmental Systems Engineering, Faculty of Process and Environmental Engineering, Technical University of Łódź, ul. Wólczańska 213, Łódź 90-924, Poland
Current address: Nano and Biophotonics group, Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Gent 9000, Belgium.
*
Author to whom correspondence should be addressed.
Academic Editor: Kazuo Azuma
Received: 24 December 2014 / Revised: 31 March 2015 / Accepted: 1 April 2015 / Published: 9 April 2015
(This article belongs to the Special Issue Biomedical Applications of Chitin and Chitosan)
View Full-Text   |   Download PDF [808 KB, uploaded 9 April 2015]   |  

Abstract

Thermosensitive injectable hydrogels based on chitosan neutralized with sodium beta-glycerophosphate (Na-β-GP) have been studied as biomaterials for drug delivery and tissue regeneration. Magnesium (Mg) has been reported to stimulate adhesion and proliferation of bone forming cells. With the aim of improving the suitability of the aforementioned chitosan hydrogels as materials for bone regeneration, Mg was incorporated by partial substitution of Na-β-GP with magnesium glycerophosphate (Mg-GP). Chitosan/Na-β-GP and chitosan/Na-β-GP/Mg-GP hydrogels were also loaded with the enzyme alkaline phosphatase (ALP) which induces hydrogel mineralization. Hydrogels were characterized physicochemically with respect to mineralizability and gelation kinetics, and biologically with respect to cytocompatibility and cell adhesion. Substitution of Na-β-GP with Mg-GP did not negatively influence mineralizability. Cell biological testing showed that both chitosan/Na-β-GP and chitosan/Na-β-GP/Mg-GP hydrogels were cytocompatible towards MG63 osteoblast-like cells. Hence, chitosan/Na-β-GP/Mg-GP hydrogels can be used as an alternative to chitosan/Na-β-GP hydrogels for bone regeneration applications. However the incorporation of Mg in the hydrogels during hydrogel formation did not bring any appreciable physicochemical or biological benefit. View Full-Text
Keywords: chitosan; hydrogel; cytocompatibility; magnesium; mineralization chitosan; hydrogel; cytocompatibility; magnesium; mineralization
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Lisková, J.; Bačaková, L.; Skwarczyńska, A.L.; Musial, O.; Bliznuk, V.; De Schamphelaere, K.; Modrzejewska, Z.; Douglas, T.E. Development of Thermosensitive Hydrogels of Chitosan, Sodium and Magnesium Glycerophosphate for Bone Regeneration Applications. J. Funct. Biomater. 2015, 6, 192-203.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
J. Funct. Biomater. EISSN 2079-4983 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top