Next Issue
Previous Issue

Table of Contents

J. Mar. Sci. Eng., Volume 2, Issue 3 (September 2014), Pages 534-592

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-3
Export citation of selected articles as:

Research

Open AccessArticle Inter-Annual Variability in Blue Whale Distribution off Southern Sri Lanka between 2011 and 2012
J. Mar. Sci. Eng. 2014, 2(3), 534-550; doi:10.3390/jmse2030534
Received: 19 December 2013 / Revised: 13 May 2014 / Accepted: 23 May 2014 / Published: 1 July 2014
Cited by 4 | PDF Full-text (1912 KB) | HTML Full-text | XML Full-text
Abstract
Blue whale (Balaenoptera musculus) movements are often driven by the availability of their prey in space and time. While globally blue whale populations undertake long-range migrations between feeding and breeding grounds, those in the northern Indian Ocean remain in low latitude
[...] Read more.
Blue whale (Balaenoptera musculus) movements are often driven by the availability of their prey in space and time. While globally blue whale populations undertake long-range migrations between feeding and breeding grounds, those in the northern Indian Ocean remain in low latitude waters throughout the year with the implication that the productivity of these waters is sufficient to support their energy needs. A part of this population remains around Sri Lanka where they are usually recorded close to the southern coast during the Northeast Monsoon. To investigate inter-annual variability in sighting locations, we conducted systematic Conductivity-Temperature-Depth (CTD) and visual surveys between January–March 2011 and January–March 2012. In 2011, there was a notable decrease in inshore sightings compared to 2009 and 2012 (p < 0.001). CTD data revealed that in 2011 there was increased freshwater in the upper water column accompanied by deeper upwelling than in 2012. We hypothesise that anomalous rainfall, along with higher turbidity resulting from river discharge, affected the productivity of the inshore waters and caused a shift in blue whale prey and, consequently, the distribution of the whales themselves. An understanding of how predators and their prey respond to environmental variability is important for predicting how these species will respond to long-term changes. This is especially important given the rapid temperature increases predicted for the semi-enclosed northern Indian Ocean. Full article
Open AccessArticle Study of Hard and Soft Countermeasures for Scour Protection of the Jacket-Type Offshore Wind Turbine Foundation
J. Mar. Sci. Eng. 2014, 2(3), 551-567; doi:10.3390/jmse2030551
Received: 18 February 2014 / Revised: 5 May 2014 / Accepted: 20 May 2014 / Published: 2 July 2014
Cited by 1 | PDF Full-text (1685 KB) | HTML Full-text | XML Full-text
Abstract
Physical model tests with the scale of 1:36 are carried out in the Near-Shore Wave Basin (NSWB) at Tainan Hydraulics Laboratory (THL) with the jacket-type offshore wind turbine foundation (jacket-type foundation) and the combination of hard or soft scour protection in the test
[...] Read more.
Physical model tests with the scale of 1:36 are carried out in the Near-Shore Wave Basin (NSWB) at Tainan Hydraulics Laboratory (THL) with the jacket-type offshore wind turbine foundation (jacket-type foundation) and the combination of hard or soft scour protection in the test area. Scouring around the jacket-type foundation exposed to wave and current was conducted in the NSWB with a mobile bed experiment. Two locations (a water depth of 12 m and 16 m) of the foundations are separately simulated in this study. Based on the analysis from the former NSWB experimental results, one traditional hard scour protection usually used in Taiwan with four layers around the foundation is proposed for the mitigation of scouring. From the experimental results, a four-layer scour protection is tested and found to be effective in preventing scouring around the jacket-type foundation. Besides the hard scour protection countermeasure, the scour protection effect of an integrated offshore wind turbine and cage net aquaculture facility as a soft countermeasure for scour protection of the jacket-type foundation is further evaluated in this study. Meanwhile, a detailed analysis for stakeholders’ opinions on the integration of offshore wind farms and coastal aquaculture is also considered to obtain important experience and knowledge; and furthermore, to understand the real demand for adjusting the feasibility of this soft countermeasure. Full article
(This article belongs to the Special Issue Marine Energy Systems)
Open AccessArticle The Role of Infragravity Waves in Near-Bed Cross-Shore Sediment Flux in the Breaker Zone
J. Mar. Sci. Eng. 2014, 2(3), 568-592; doi:10.3390/jmse2030568
Received: 20 December 2013 / Revised: 19 May 2014 / Accepted: 6 June 2014 / Published: 19 August 2014
PDF Full-text (1108 KB) | HTML Full-text | XML Full-text
Abstract
Results from a series of field experiments, conducted to investigate the influence of infragravity waves (from wave groups), ripple type and location relative to the breaker line on cross-shore suspended sediment flux close to the sea bed in nearshore environments, are presented. The
[...] Read more.
Results from a series of field experiments, conducted to investigate the influence of infragravity waves (from wave groups), ripple type and location relative to the breaker line on cross-shore suspended sediment flux close to the sea bed in nearshore environments, are presented. The field data were collected from Cable Beach (Broome) and Mullaloo Beach in Western Australia and Chilaw in Sri Lanka. These beaches experience different incident wave, tidal and morphological conditions, with Cable Beach having a 10-m spring tidal range, whilst the other two beaches have tidal ranges <1.0 m. Measurements included simultaneous records of surface elevation, two-dimensional horizontal current velocities and suspended sediment concentrations, together with half-hourly observations of the seabed topography. Although most of the data sets were obtained just outside of the surf zone, a few results from inside of the surf zone were also included. A significant correlation between wave groups and suspended sediment concentration was found at all of the measurement sites, either with or without bed ripples. The direction and magnitude of cross-shore suspended sediment flux varied with location with respect to the breaker line; however, other parameters, such as bed ripples and velocity skewness, could have influenced this result. In Broome, where the measurement location with respect to the breaker line varied with the tidal cycle, the cross-shore sediment flux due to swell waves was shoreward inside and just outside of the surf zone and seaward farther offshore of the breaker line. Further, sediment flux due to swell waves was onshore when the seabed was flat and offshore over post-vortex ripples. Sediment flux due to swell waves was onshore when the normalised velocity skewness towards the shore was high (positive); the flux was offshore when the skewness was lower, but positive, suggesting the influence of other parameters, such as ripples and grain size. The net cross-shore sediment flux was onshore when the Dean number was less than 1.67 and offshore when the Dean number was greater than 1.67. Nevertheless, the Dean number did not account for the influence of ripples or velocity skewness. The cross-shore sediment flux at the infragravity frequency was mainly offshore outside of the surf zone, whereas it varied between onshore and offshore inside of the surf zone. Full article

Journal Contact

MDPI AG
JMSE Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
jmse@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to JMSE
Back to Top