Next Article in Journal
The Impact of Biofilms upon Surfaces Relevant to an Intermediate Level Radioactive Waste Geological Disposal Facility under Simulated Near-Field Conditions
Previous Article in Journal
Automated Webcam Monitoring of Fractional Snow Cover in Northern Boreal Conditions
Article Menu
Issue 3 (September) cover image

Export Article

Open AccessArticle
Geosciences 2017, 7(3), 56; doi:10.3390/geosciences7030056

Influence of Substratum Hydrophobicity on the Geomicrobiology of River Biofilm Architecture and Ecology Analyzed by CMEIAS Bioimage Informatics

Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
*
Author to whom correspondence should be addressed.
Received: 3 May 2017 / Revised: 26 June 2017 / Accepted: 3 July 2017 / Published: 10 July 2017
(This article belongs to the Special Issue Microbial Ecology: Interaction, Adaptation and Evolution)

Abstract

Microbial biogeography in terrestrial and freshwater ecosystems is mainly dominated by community biofilm lifestyles. Here, we describe applications of computer-assisted microscopy using CMEIAS (Center for Microbial Ecology Image Analysis System) bioimage informatics software for a comprehensive analysis of river biofilm architectures and ecology. Natural biofilms were developed for four summer days on microscope slides of plain borosilicate glass and transparent polystyrene submerged in the Red Cedar River that flows through the Michigan State University campus. Images of the biofilm communities were acquired using brightfield and phase-contrast microscopy at spatial resolutions revealing details of microcolonies and individual cells, then digitally segmented to the foreground objects of interest. Phenotypic features of their size, abundance, surface texture, contour morphology, fractal geometry, ecophysiology, and landscape/spatial ecology were digitally extracted and evaluated by many discriminating statistical tests. The results indicate that river biofilm architecture exhibits significant geospatial structure in situ, providing many insights on the strong influence that substratum hydrophobicity–wettability exert on biofilm development and ecology, including their productivity and colonization intensity, morphological diversity/dominance/conditional rarity, nutrient apportionment/uptake efficiency/utilization, allometry/metabolic activity, responses to starvation and bacteriovory stresses, spatial patterns of distribution/dispersion/connectivity, and interpolated autocorrelations of cooperative/conflicting cell–cell interactions at real-world spatial scales directly relevant to their ecological niches. The significant impact of substratum physicochemistry was revealed for biofilms during their early immature stage of development in the river ecosystem. Bioimage informatics can fill major gaps in understanding the geomicrobiology and microbial ecology of biofilms in situ when examined at spatial scales suitable for phenotypic analysis at microcolony and single-cell resolutions. View Full-Text
Keywords: CMEIAS; bioimage informatics; biofilm architecture; colonization behavior; image analysis; ecophysiology; spatial ecology CMEIAS; bioimage informatics; biofilm architecture; colonization behavior; image analysis; ecophysiology; spatial ecology
Figures

Figure 1a

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Dazzo, F.B.; Sexton, R.; Jain, A.; Makhoul, A.; Shears, M.; Gusfa, D.; Handelsman, S.; Niccum, B.; Onsay, D. Influence of Substratum Hydrophobicity on the Geomicrobiology of River Biofilm Architecture and Ecology Analyzed by CMEIAS Bioimage Informatics. Geosciences 2017, 7, 56.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Geosciences EISSN 2076-3263 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top