Previous Issue
Volume 12, April
 
 

Lubricants, Volume 12, Issue 5 (May 2024) – 19 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
19 pages, 7711 KiB  
Article
High-Temperature and High-Pressure Tribological Properties of Siliconized Graphite for Water-Lubricated Thrust Bearing Application in Main Coolant Pump
by Sihang Liu, Baojun Zhang, Long Cai, Weiguang Wang, Taihe Liang and Mingkai Lei
Lubricants 2024, 12(5), 159; https://doi.org/10.3390/lubricants12050159 - 03 May 2024
Viewed by 102
Abstract
The effect of the microstructure of siliconized graphite on tribological properties is investigated by using a high-temperature and high-pressure water-lubricated tribometer on a self-mated ring-on-ring configuration under an applied load of 500–1500 N with a spindle speed of 100–5000 rpm in both 90 [...] Read more.
The effect of the microstructure of siliconized graphite on tribological properties is investigated by using a high-temperature and high-pressure water-lubricated tribometer on a self-mated ring-on-ring configuration under an applied load of 500–1500 N with a spindle speed of 100–5000 rpm in both 90 °C (5 MPa) and 25 °C (1 MPa) water environments, respectively. The Stribeck curves measurement and continuous wear tests are performed and analyzed in both water environments. The wear behaviors of the graphite, SiC, and free-silicon phases in siliconized graphite are demonstrated to explore the wear mechanism. The larger wear depths of a low-worn surface roughness on the three phases contribute to the boundary lubrication. The shallower wear depths are observed on the SiC and Si phases under the mixed lubrication, corresponding to partial contact wear of surface asperities. The wavy surface of the SiC phase and uniform flow-oriented striae of the Si phase are attributed to hydrodynamic lubrication, caused by full water film scouring the worn surface. Finally, an integrated evaluation method of G duty parameters is successfully used to identify the lubrication regimes of siliconized graphite from the boundary, mixed, to hydrodynamic lubrications for a water-lubricated thrust bearing application in the main coolant pump of a nuclear power plant. Full article
Show Figures

Figure 1

18 pages, 1431 KiB  
Article
Investigation into the Heat Transfer Behavior of Electrostatic Atomization Minimum Quantity Lubrication (EMQL) during Grinding
by Zhiyong He, Dongzhou Jia, Yanbin Zhang, Da Qu, Zhenlin Lv and Erjun Zeng
Lubricants 2024, 12(5), 158; https://doi.org/10.3390/lubricants12050158 - 30 Apr 2024
Viewed by 147
Abstract
Electrostatic atomization minimum quantity lubrication (EMQL) technology has been developed to address the need for environmentally friendly, efficient, and low-damage grinding of challenging titanium alloy materials. EMQL leverages multiple physical fields to achieve precise atomization of micro-lubricants, enabling effective lubrication in high temperature, [...] Read more.
Electrostatic atomization minimum quantity lubrication (EMQL) technology has been developed to address the need for environmentally friendly, efficient, and low-damage grinding of challenging titanium alloy materials. EMQL leverages multiple physical fields to achieve precise atomization of micro-lubricants, enabling effective lubrication in high temperature, high pressure, and high-speed grinding environments through the use of electric traction. Notably, the applied electric field not only enhances atomization and lubrication capabilities of micro-lubricants but also significantly impacts heat transfer within the grinding zone. In order to explore the influence mechanism of external electric field on spatial heat transfer, this paper first comparatively analyzes the grinding heat under dry grinding, MQL, and EMQL conditions and explores the intensity of the effect of external electric field on the heat transfer behavior in the grinding zone. Furthermore, the COMSOL numerical calculation platform was used to establish an electric field-enhanced (EHD) heat transfer model, clarifying charged particles' migration rules between poles. By considering the electroviscous effect, the study reveals the evolution of heat transfer structures in the presence of an electric field and its impact on heat transfer mechanisms. Full article
(This article belongs to the Special Issue Tribological Properties of Biolubricants)
12 pages, 4281 KiB  
Article
Effect of Wear on Alternating Bending Fatigue Life of 20CrNi2Mo Martensitic Steel
by Xinmao Qin, Xixia Liu, Huaze Huang and Cunhong Yin
Lubricants 2024, 12(5), 157; https://doi.org/10.3390/lubricants12050157 - 30 Apr 2024
Viewed by 225
Abstract
Bending fatigue failures are commonly related to the wear behavior in an active system. The surface wear and plastic deformation of the tribolayer play crucial roles in the wear–bending fatigue behaviors of steels. In particular, the lamellar structure of martensitic steel leads to [...] Read more.
Bending fatigue failures are commonly related to the wear behavior in an active system. The surface wear and plastic deformation of the tribolayer play crucial roles in the wear–bending fatigue behaviors of steels. In particular, the lamellar structure of martensitic steel leads to its unique wear–bending fatigue behavior. In this work, the wear–bending fatigue testing method and device were introduced to explore the wear–bending fatigue behavior of the martensitic steel. The effect of wear on the alternating bending fatigue life of 20CrNi2Mo martensitic steel was studied under low and high fatigue stress. The influence of wear debris on the fatigue life at two different sliding speeds was also analyzed. The results show that the fatigue life decreased with the wear load increased under high bending stress. Moreover, for systems with nanoscale wear debris on the steel surface, the wear–bending fatigue lifetimes are significantly enhanced compared with large wear debris. Full article
(This article belongs to the Special Issue Friction and Wear of Alloys)
Show Figures

Figure 1

20 pages, 5974 KiB  
Article
Structure–Performance Relationship of Coal-Based Lubricating Base Oils and Sensitivities to Typical Additives
by Junyi Liu, Zhaojun Zhang, Xia Zhou, Wenjing Hu, Renmin Pan and Jiusheng Li
Lubricants 2024, 12(5), 156; https://doi.org/10.3390/lubricants12050156 - 30 Apr 2024
Viewed by 266
Abstract
The relationship between the structure characteristics and performances of coal-based hydrogenation isomeric (CTL) base oil and metallocene-catalyzed coal-based poly-alpha-olefin (mPAO) base oil is clarified in this paper. CTL and mPAO were compared with typical petroleum-based and natural gas-based commercial API III and IV [...] Read more.
The relationship between the structure characteristics and performances of coal-based hydrogenation isomeric (CTL) base oil and metallocene-catalyzed coal-based poly-alpha-olefin (mPAO) base oil is clarified in this paper. CTL and mPAO were compared with typical petroleum-based and natural gas-based commercial API III and IV base oils. Pressurized differential scanning calorimetry (PDSC), the rotary bomb oxidation test (RBOT), and a four-ball friction tester were used to evaluate the oxidation stability and lubrication performance of base oils under different working conditions. The sensitivity of different base oils to typical antioxidants and extreme-pressure antiwear agents was compared. In particular, the composition and structure of CTL base oil are clearly different from GTL and mineral base oil. The coal-based CTL and mPAO base oils exhibit commendable viscosity–temperature properties, coupled with low-temperature fluidity, fire safety, and minimal evaporation loss. The lubricating properties, oxidation stability, and sensitivity to extreme-pressure antiwear agents of CTL are close to those of similar base oils. However, the sensitivity of CTL to typical antioxidants is relatively poor. In addition, compared with commercial PAO base oil, mPAO has a lower isomerization degree and fewer isomerization types. The oxidation stability and sensitivity to typical antioxidants of mPAO base oil are comparable with those of commercial PAO base oil, while its lubrication performance and sensitivity to typical extreme-pressure antiwear agents are significantly better than those of commercial PAO base oil. Full article
Show Figures

Figure 1

19 pages, 7808 KiB  
Article
Synergistic Effects of Layered Double Hydroxide and MoS2 on the Performance of Lubricants
by Weidong Zhou, Yong Li, Shutian Cheng, Yongdi He, Jinou Song and Qiang Zhang
Lubricants 2024, 12(5), 155; https://doi.org/10.3390/lubricants12050155 - 29 Apr 2024
Viewed by 281
Abstract
In this study, layered double hydroxide (LDH) and molybdenum disulfide (MoS2) were used as additives to prepare lubricants. The morphology and particle distribution of the LDH and MoS2 were characterized using a scanning electron microscope and a laser particle size [...] Read more.
In this study, layered double hydroxide (LDH) and molybdenum disulfide (MoS2) were used as additives to prepare lubricants. The morphology and particle distribution of the LDH and MoS2 were characterized using a scanning electron microscope and a laser particle size analyzer, respectively. Thermogravimetric analysis was used to compare the performance of the lubricants at high temperature. The extreme pressure and wear resistance performance of the lubricants were tested using a four-ball machine and a fretting-wear machine. Then, the lubricants were applied in a bolt fastener. The loosening torque and surface wear condition at high temperature were compared. By adding LDH and MoS2 to the lubricants, the extreme pressure and wear resistance performance and anti-seize performance at high temperature were improved significantly. The LDH showed better anti-seize performance than the MoS2 because of its strong and stable structure at high temperature. The MoS2 showed better anti-wear performance under a high load because of its soft layered structure. The MoS2 with a larger particle size showed better extreme pressure performance under a high load. The LDH and MoS2 played a synergistic effect under the conditions of high temperature and high load. Full article
Show Figures

Figure 1

16 pages, 9655 KiB  
Article
Research on the Preparation of Zirconia Coating on Titanium Alloy Surface and Its Tribological Properties
by Qiancheng Zhao, Li Wang, Tianchang Hu, Junjie Song, Yunfeng Su and Litian Hu
Lubricants 2024, 12(5), 154; https://doi.org/10.3390/lubricants12050154 - 28 Apr 2024
Viewed by 302
Abstract
Titanium alloys have been widely used in aerospace and other fields due to their excellent properties such as light weight and high strength. However, the extremely poor tribological properties of titanium alloys limit their applications in certain special working conditions. In order to [...] Read more.
Titanium alloys have been widely used in aerospace and other fields due to their excellent properties such as light weight and high strength. However, the extremely poor tribological properties of titanium alloys limit their applications in certain special working conditions. In order to improve the tribological properties of titanium alloys, the zirconia coatings were prepared on the surface of a TC4 titanium alloy using the discharge plasma sintering method in this article. The influence of sintering parameters on properties such as density, adhesion, hardness, and phase composition, as well as tribological properties (friction coefficient, wear rate) were investigated, and the influence mechanism of the coating structure on its mechanical and frictional properties was analyzed. The results showed that, with the increase in sintering temperature, the density, bonding strength, and hardness of the zirconia coating were significantly improved. The zirconia coating prepared at a sintering temperature of 1500 °C and a sintering time of 20 min had the lowest friction coefficient and wear rate, which are 0.33 and 6.2 × 10−8 cm3·N−1·m−1, respectively. Numerical analysis showed that the increase in temperature and the extension of time contributed to the extension of the diffusion distance between zirconia and titanium, thereby improving the interfacial adhesion. The influence mechanism of different sintering temperatures and sintering times on the wear performance of zirconia coatings was explained through Hertz contact theory. Full article
(This article belongs to the Special Issue Friction and Wear of Ceramics)
Show Figures

Figure 1

16 pages, 11059 KiB  
Article
Effect of Post-Plasma Nitrocarburized Treatment on Mechanical Properties of Carburized and Quenched 18Cr2Ni4WA Steel
by Dazhen Fang, Jinpeng Lu, Haichun Dou, Zelong Zhou, Jiwen Yan, Yang Li and Yongyong He
Lubricants 2024, 12(5), 153; https://doi.org/10.3390/lubricants12050153 - 28 Apr 2024
Viewed by 347
Abstract
Under extreme conditions such as high speed and heavy load, 18Cr2Ni4WA steel cannot meet the service requirements even after carburizing and quenching processes. In order to obtain better surface mechanical properties and tribological property, a hollow cathode ion source diffusion strengthening device was [...] Read more.
Under extreme conditions such as high speed and heavy load, 18Cr2Ni4WA steel cannot meet the service requirements even after carburizing and quenching processes. In order to obtain better surface mechanical properties and tribological property, a hollow cathode ion source diffusion strengthening device was used to nitride the traditional carburizing and quenching samples. Unlike traditional ion carbonitriding technology, the low-temperature ion carbonitriding technology used in this article can increase the surface hardness of the material by 50% after 3 h of treatment, from the original 600 HV0.1 to 900 HV0.1, while the core hardness only decreases by less than 20%. The effect of post-ion carbonitriding treatment on mechanical properties and tribological properties of the carburized and quenched 18Cr2Ni4WA steel was investigated. Samples in different treatment are characterized using optical microscopy (OM), scanning electron microscopy (SEM), optimal SRV-4 high temperature tribotester, as well as Vickers hardness tester. Under two conditions of 6N light load and 60 N heavy load, compared with untreated samples, the wear rate of ion carbonitriding samples decreased by more than 99%, while the friction coefficient remained basically unchanged. Furthermore, the careful selection of ion nitrocarburizing and carburizing tempering temperatures in this study has been shown to significantly enhance surface hardness and wear resistance, while preserving the overall hardness of the carburized sample. The present study demonstrates the potential of ion carbonitriding technology as a viable post-treatment method for carburized gears. Full article
Show Figures

Figure 1

15 pages, 1658 KiB  
Article
The Environmental and Economic Importance of Mixed and Boundary Friction
by Robert Ian Taylor and Ian Sherrington
Lubricants 2024, 12(5), 152; https://doi.org/10.3390/lubricants12050152 - 28 Apr 2024
Viewed by 376
Abstract
One route to reducing global CO2 emissions is to improve the energy efficiency of machines. Even small improvements in efficiency can be valuable, especially in cases where an efficiency improvement can be realized over many millions of newly produced machines. For example, [...] Read more.
One route to reducing global CO2 emissions is to improve the energy efficiency of machines. Even small improvements in efficiency can be valuable, especially in cases where an efficiency improvement can be realized over many millions of newly produced machines. For example, conventional passenger car combustion engines are being downsized (and also downspeeded). Increasingly, they are running on lower-viscosity engine lubricants (such as SAE 0W-20 or lower viscosity grades) and often also have stop–start systems fitted (to prevent engine idling when the vehicle is stopped). Some of these changes result in higher levels of mixed and boundary friction, and so accurate estimation of mixed/boundary friction losses is becoming of increased importance, for both estimating friction losses and wear volumes. Traditional approaches to estimating mixed/boundary friction, which employ real area of contact modelling, and assumptions such as the elastic deformation of asperities, are widely used, but recent experimental data suggest that some of these approaches underestimate mixed/boundary friction losses. In this paper, a discussion of the issues involved in reliably estimating mixed/boundary friction losses in machine elements is undertaken, highlighting where the key uncertainties lie. Mixed/boundary lubrication losses in passenger car and heavy-duty internal combustion engines are then estimated and compared with published data, and a detailed description of how friction is related to fuel consumption in these vehicles, on standard fuel economy driving cycles, is given. Knowing the amount of fuel needed to overcome mixed/boundary friction in these vehicles enables reliable estimates to be made of both the financial costs of mixed/boundary lubrication for today’s vehicles and their associated CO2 emissions, and annual estimates are reported to be approximately USD 290 billion with CO2 emissions of 480 million tonnes. Full article
Show Figures

Figure 1

17 pages, 6758 KiB  
Article
Experimental Research on Dynamic Characteristics of a Multi-Disc Rotor System Supported by Aerostatic Bearings
by Zhimin Su, Jianbo Zhang, Yimou Cai and Dongjiang Han
Lubricants 2024, 12(5), 151; https://doi.org/10.3390/lubricants12050151 - 27 Apr 2024
Viewed by 224
Abstract
Gas bearings have the advantages of small friction loss, wide applicable speed range, no pollution, etc., and have important application prospects in micro and small high-speed rotating machinery. However, due to its compressibility and low viscosity, its dynamic stability in high-speed rotating machinery [...] Read more.
Gas bearings have the advantages of small friction loss, wide applicable speed range, no pollution, etc., and have important application prospects in micro and small high-speed rotating machinery. However, due to its compressibility and low viscosity, its dynamic stability in high-speed rotating machinery is the key to constraining its development. The experimental study of shaft system dynamics is the main means to explore the mechanism of rotor behavior. On the test platform of dynamic characteristics of multi-disc rotor system supported by aerostatic bearings, experimental research on the nonlinear dynamic characteristics of a rotor system was carried out, and nonlinear vibration test and analysis methods, such as axial orbits, bifurcation diagrams, and spectral characteristics, were adopted, and vibration phenomena, including the critical rotational speed accumulating energy and low-frequency accumulating energy, were presented and the vibration characteristics of bearing fracture faults were presented. The bearing supply pressure and rubber damping pad were introduced as a method to suppress the low-frequency vibration of the aerostatic bearing rotor system, and its vibration-reduction effect was verified by experiments. The above results can provide technical support for vibration control and fault diagnosis of rotor systems supported by aerostatic bearings. Full article
(This article belongs to the Special Issue Gas Lubrication and Dry Gas Seal)
Show Figures

Figure 1

13 pages, 2009 KiB  
Article
The Effect of Ethanol Fuel-Diluted Lubricants on the Friction of Oil Control Ring Conjunction: A Combined Analytical and Experimental Investigation
by Nicholas Morris, Sean Byrne, Michael Forder, Nader Dolatabadi, Paul King, Ramin Rahmani, Homer Rahnejat and Sebastian Howell-Smith
Lubricants 2024, 12(5), 150; https://doi.org/10.3390/lubricants12050150 - 27 Apr 2024
Viewed by 323
Abstract
This paper presents an investigation of the frictional behaviour of three-piece piston oil control rings. A bespoke tribometer replicates the kinematics of the contact between a full oil control ring and the cylinder liner. The three-piece oil control ring is composed of two [...] Read more.
This paper presents an investigation of the frictional behaviour of three-piece piston oil control rings. A bespoke tribometer replicates the kinematics of the contact between a full oil control ring and the cylinder liner. The three-piece oil control ring is composed of two segments, separated by a waveform-type expander. The experimental results indicate the dominance of a mixed regime of lubrication throughout the stroke. This is particularly the case when the experiments are conducted at 80 °C, a typical engine sump temperature, when compared with those at 20 °C (a typical engine start-up temperature in the UK in the summer). A mixed hydrodynamic analytical model of the oil control ring–cylinder liner tribological interface is employed to apportion frictional contributions with their physical underlying mechanisms. Therefore, combined numerical and experimental investigations are extended to lubricant contamination/dilution by ethanol-based fuels. This study shows that the transition from E10 to E85 would have an insignificant effect on the friction generated in the oil control ring conjunction. This holistic approach, using a detailed predictive l mixed regime of lubrication model and a representative bespoke tribometry, has not hitherto been reported in the open literature. Full article
Show Figures

Figure 1

19 pages, 2761 KiB  
Review
Two-Dimensional Nanomaterials in Hydrogels and Their Potential Bio-Applications
by Zhongnan Wang, Hui Guo, Ji Zhang, Yi Qian and Yanfei Liu
Lubricants 2024, 12(5), 149; https://doi.org/10.3390/lubricants12050149 - 27 Apr 2024
Viewed by 204
Abstract
Hydrogels with high hydrophilicity and excellent biocompatibility have been considered as potential candidates for various applications, including biomimetics, sensors and wearable devices. However, their high water content will lead to poor load-bearing and high friction. Currently, two-dimensional (2D) materials have been widely investigated [...] Read more.
Hydrogels with high hydrophilicity and excellent biocompatibility have been considered as potential candidates for various applications, including biomimetics, sensors and wearable devices. However, their high water content will lead to poor load-bearing and high friction. Currently, two-dimensional (2D) materials have been widely investigated as promising nanofillers to improve the mechanical and lubrication performances of hydrogels because of their unique physical–chemical properties. On one hand, 2D materials can participate in the cross-linking of hydrogels, leading to enhanced load-bearing capacity and fatigue resistance, etc.; on the other hand, using 2D materials as nanofillers also brings unique biomedical properties. The combination of hydrogels and 2D materials shows bright prospects for bioapplications. This review focusses on the recent development of high-strength and low-friction hydrogels with the addition of 2D nanomaterials. Functional properties and the underlying mechanisms of 2D nanomaterials are firstly overviewed. Subsequently, the mechanical and friction properties of hydrogels with 2D nanomaterials including graphene oxide, black phosphorus, MXenes, boron nitride, and others are summarized in detail. Finally, the current challenges and potential applications of using 2D nanomaterials in hydrogel, as well as future research, are also discussed. Full article
(This article belongs to the Special Issue Tribology of 2D Nanomaterials)
28 pages, 13189 KiB  
Article
WLI, XPS and SEM/FIB/EDS Surface Characterization of an Electrically Fluted Bearing Raceway
by Omid Safdarzadeh, Alireza Farahi, Andreas Binder, Hikmet Sezen and Jan Philipp Hofmann
Lubricants 2024, 12(5), 148; https://doi.org/10.3390/lubricants12050148 - 27 Apr 2024
Viewed by 258
Abstract
Electrical bearing currents may disturb the performance of the bearings via electro-corrosion if they surpass a limit of ca. 0.1 to 0.3 A/mm2. A continuous current flow, or, after a longer time span, an alternating current or a repeating impulse-like current, [...] Read more.
Electrical bearing currents may disturb the performance of the bearings via electro-corrosion if they surpass a limit of ca. 0.1 to 0.3 A/mm2. A continuous current flow, or, after a longer time span, an alternating current or a repeating impulse-like current, damages the raceway surface, leading in many cases to a fluting pattern on the raceway. Increased bearing vibration, audible noise, and decreased bearing lubrication as a result may demand a replacement of the bearings. Here, an electrically corroded axial ball bearing (type 51208) with fluting patterns is investigated. The bearing was lubricated with grease lubrication and was exposed to 4 A DC current flow. It is shown that the electric current flow causes higher concentrations of iron oxides and iron carbides on the bearing raceway surface together with increased surface roughness, leading to a mixed lubrication also at elevated bearing speeds up to 1500 rpm. The “electrically insulating” iron oxide layer and the “mechanically hard” iron carbide layer on the bearing steel are analysed by WLI, XPS, SEM, and EDS. White Light Interferometry (WLI) is used to provide an accurate measurement of the surface topography and roughness. X-ray Photoelectron Spectroscopy (XPS) measurements are conducted to analyze the chemical surface composition and oxidation states. Scanning Electron Microscopy (SEM) is applied for high-resolution imaging of the surface morphology, while the Focused Ion Beam (FIB) is used to cut a trench into the bearing surface to inspect the surface layers. With the Energy Dispersive X-ray spectrometry (EDS), the presence of composing elements is identified, determining their relative concentrations. The electrically-caused iron oxide and iron carbide may develop periodically along the raceway due to the perpendicular vibrations of the rolling ball on the raceway, leading gradually to the fluting pattern. Still, a simulation of this vibration-induced fluting-generation process from the start with the first surface craters—of the molten local contact spots—to the final fluting pattern is missing. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 2nd Edition)
14 pages, 5923 KiB  
Article
Friction Coefficient of Wet Clutches as a Function of Service Mileage
by Bangzhi Wu
Lubricants 2024, 12(5), 147; https://doi.org/10.3390/lubricants12050147 - 26 Apr 2024
Viewed by 263
Abstract
As a core component for efficient variable speed transmission and energy saving, wet clutches are widely used in the transmission systems of energy-saving and new energy vehicles. However, with an increase in the service mileage of the wet clutch, the friction coefficient undergoes [...] Read more.
As a core component for efficient variable speed transmission and energy saving, wet clutches are widely used in the transmission systems of energy-saving and new energy vehicles. However, with an increase in the service mileage of the wet clutch, the friction coefficient undergoes alterations. This leads to a deterioration of the control accuracy of the clutch transmission torque, which ultimately has a negative impact on the dynamic characteristics and driving safety of the entire vehicle. In order to understand the service behavior of the friction coefficient in a wet clutch, wet clutches with different service mileages were investigated experimentally and theoretically. The results show that as the service mileage increased, the hydrodynamic lubrication phase was extended. Analyses of the three-dimensional profile of the friction plate and the theoretical simulation of the friction revealed that the edge ridges of the friction pads were flattened. This increased the clutch engagement force when the asperities on the separator and friction plates came into contact. Full article
Show Figures

Figure 1

17 pages, 10275 KiB  
Article
Tribological Behavior of GTL Base Oil Improved by Ni-Fe Layered Double Hydroxide Nanosheets
by Shuo Xiang, Xinghao Zhi, Hebin Bao, Yan He, Qinhui Zhang, Shigang Lin, Bo Hu, Senao Wang, Peng Lu, Xin Yang, Qiang Tian and Xin Du
Lubricants 2024, 12(5), 146; https://doi.org/10.3390/lubricants12050146 - 26 Apr 2024
Viewed by 400
Abstract
The layered double hydroxide (LDH) has been practically applied in the field of tribology and materials science due to its unique physicochemical properties, weak bonding, flexible structural composition, and adjustable interlayer space. In this work, a series of ultrathin and flexible composition of [...] Read more.
The layered double hydroxide (LDH) has been practically applied in the field of tribology and materials science due to its unique physicochemical properties, weak bonding, flexible structural composition, and adjustable interlayer space. In this work, a series of ultrathin and flexible composition of Ni-Fe LDH samples were prepared via a cost-effective room-temperature co-precipitation process. Then, they were mechanically dispersed into GTL base oil and their lubricating performance were tested by a four-ball tribometer. It is found that the variation of Ni-Fe ratio of Ni-Fe LDH has a great influence on the improvement of lubricating performance of GTL base oil. At the same concentration (0.3 mg/mL), the Ni-Fe LDH with Ni/Fe ratio of 6 was demonstrated to exhibit the best lubricating performance and the AFC, WSD, the wear volume, surface roughness and average wear scar depth decreased 51.3%, 30.8%, 78.4%, 6.7% and 50.0%, respectively. SEM-EDS and X-ray photoelectron spectra illustrated that the tribo-chemical film consisting of iron oxides and NiO with better mechanical properties formed and slowly replaced the physical film, which resists scuffing and protect solid surface from severe collisions. Full article
(This article belongs to the Special Issue Tribology of 2D Nanomaterials)
Show Figures

Figure 1

12 pages, 5840 KiB  
Article
An Experimental Study on the Distribution of Grease in Cylindrical Roller Bearings
by He Liang, Yan Lu, Wenzhong Wang, Yi Sun, Jingjing Zhao and Yulong Guo
Lubricants 2024, 12(5), 145; https://doi.org/10.3390/lubricants12050145 - 25 Apr 2024
Viewed by 311
Abstract
The lubrication performance of bearings is greatly influenced by the distribution of the lubricant. In this study, a cylindrical rolling bearing test rig was constructed and presented. The distribution of grease and lubricating oil along the contact region was examined using the laser-induced [...] Read more.
The lubrication performance of bearings is greatly influenced by the distribution of the lubricant. In this study, a cylindrical rolling bearing test rig was constructed and presented. The distribution of grease and lubricating oil along the contact region was examined using the laser-induced fluorescence technique, and the thickness of the layer was determined. The lubricating oil and grease layer thickness distribution map was acquired. The effects of supply amount, thickener content, and speed on grease distribution were examined. Mechanisms for replenishing the line contact area were investigated. Full article
(This article belongs to the Special Issue Tribological Study in Rolling Bearing)
Show Figures

Figure 1

17 pages, 7366 KiB  
Article
Simulation Analysis and Experimental Study on the Fluid–Solid–Thermal Coupling of Traction Motor Bearings
by Hengdi Wang, Han Li, Zheming Jin, Jiang Lin, Yongcun Cui, Chang Li, Heng Tian and Zhiwei Wang
Lubricants 2024, 12(5), 144; https://doi.org/10.3390/lubricants12050144 - 25 Apr 2024
Viewed by 240
Abstract
The traction motor is a crucial component of high-speed electric multiple units, and its operational reliability is directly impacted by the temperature increase in the bearings. To accurately predict and simulate the temperature change process of traction motor bearings during operation, a fluid–solid–thermal [...] Read more.
The traction motor is a crucial component of high-speed electric multiple units, and its operational reliability is directly impacted by the temperature increase in the bearings. To accurately predict and simulate the temperature change process of traction motor bearings during operation, a fluid–solid–thermal simulation analysis model of grease-lubricated deep groove ball bearings was constructed. This model aimed to simulate the temperature rise of the bearing and the grease flow process, which was validated through experiments. The results from the simulation analysis and tests indicate that the temperature in the contact zone between the bearing rolling element and the raceway, as well as the ring temperature, initially increases to a peak and then gradually decreases, eventually stabilizing once the bearing’s heat generation power and heat transfer power reach equilibrium. Furthermore, the established fluid–solid–thermal coupling simulation analysis model can accurately predict the amount of grease required for effective lubrication in the bearing cavity, which stabilizes along with the bearing temperature. The findings of this research can serve as a theoretical foundation and technical support for monitoring the health status of high-speed EMU traction motor bearings. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 2nd Edition)
Show Figures

Figure 1

23 pages, 38082 KiB  
Article
Optimal Design of Boundary Angle for Gas Foil Thrust Bearing Thermal Performance
by Bin Hu, Anping Hou, Rui Deng, Xiaodong Yang, Zhiyong Wu, Qifeng Ni and Zhong Li
Lubricants 2024, 12(5), 143; https://doi.org/10.3390/lubricants12050143 - 24 Apr 2024
Viewed by 264
Abstract
As the energy density and efficiency requirements of air compressors continue to increase, gas foil thrust bearings face a high risk of thermal failure due to their elevated speed and limited cooling space. This paper proposes a novel structure for gas foil thrust [...] Read more.
As the energy density and efficiency requirements of air compressors continue to increase, gas foil thrust bearings face a high risk of thermal failure due to their elevated speed and limited cooling space. This paper proposes a novel structure for gas foil thrust bearings with enhanced thermal characteristics. A thermo-elastic–hydrodynamic model is developed using a thermal-fluid–solid interaction approach to investigate aerodynamic and thermal performance. The load capacity and thermal characteristics of nine different boundary angles are analyzed. The model is validated, and the actual characteristics of gas foil bearings with various boundary angles are examined using a test rig. The results indicate that, compared to conventional gas foil thrust bearings with a boundary angle of 0°, the new structure with a boundary angle ranging from −10° to −5° not only maintains the load carrying capacity but also improves thermal characteristics. Furthermore, this improvement becomes more pronounced with higher rotational speeds. Therefore, the proposed optimization is advantageous in reducing the risk of thermal failure. Full article
Show Figures

Figure 1

16 pages, 4241 KiB  
Article
Vibration-Based Detection of Axlebox Bearing Considering Inner and Outer Ring Raceway Defects
by Chuang Liu, Xinwen Zhang, Ruichen Wang, Qiang Guo and Junguo Li
Lubricants 2024, 12(5), 142; https://doi.org/10.3390/lubricants12050142 - 23 Apr 2024
Viewed by 257
Abstract
The occurrence of an axlebox bearing ring raceway defect is an inevitable and commonly observed phenomenon in railway wheels. It not only leads to surface damage but also poses the potential threat of further damage and degradation, thereby increasing the risks associated with [...] Read more.
The occurrence of an axlebox bearing ring raceway defect is an inevitable and commonly observed phenomenon in railway wheels. It not only leads to surface damage but also poses the potential threat of further damage and degradation, thereby increasing the risks associated with running safety and maintenance costs. Hence, it becomes imperative to detect raceway defects at an early stage to mitigate safety hazards and reduce maintenance efforts. In this study, the focus lies in investigating the effectiveness of vibration-based detection techniques for identifying raceway defects in high-speed train axlebox bearing systems. To achieve this, a dynamic model that accurately represents the coupling dynamics between the vehicle and the track is developed. This model incorporates various dynamic factors, such as traction transmission, gear transmission, and track geometry irregularities. By using the comprehensive dynamic model, the dynamic responses of the axlebox can be accurately calculated. The proposed methodology primarily revolves around analysing the vertical vibrations of the axlebox caused by raceway defects in both the time and frequency domains. Additionally, an envelope analysis using a developed band-pass filter is also employed. The results obtained from this study clearly demonstrate the successful detection of raceway defects in a more realistic vehicle model, thereby providing an efficient approach for the detection of axlebox bearing raceway defects. Consequently, this research contributes significantly to the field of high-speed train systems and paves the way for enhanced safety and maintenance practices. Full article
(This article belongs to the Special Issue Condition Monitoring and Simulation Analysis of Bearings)
Show Figures

Figure 1

16 pages, 3119 KiB  
Article
Cold-Flow Properties of Estolides: The Older (D97 and D2500) versus the Mini-(D5773 and D5949) Methods
by Grigor B. Bantchev, Helen Ngo, Yunzhi Chen, DeMichael D. Winfield and Steven C. Cermak
Lubricants 2024, 12(5), 141; https://doi.org/10.3390/lubricants12050141 - 23 Apr 2024
Viewed by 345
Abstract
There is growing research on developing new and sustainable lubricants. Sustainable lubricants with adequate cold-flow properties are of particular interest for many applications. One limitation of the established methods for measuring cold flow properties is the large volume needed to test samples. This [...] Read more.
There is growing research on developing new and sustainable lubricants. Sustainable lubricants with adequate cold-flow properties are of particular interest for many applications. One limitation of the established methods for measuring cold flow properties is the large volume needed to test samples. This makes initial screening of many hard-to-synthesize samples difficult. In the current study, we compared the results of the older, widely accepted ASTM methods D97 (pour point, PP) and D2500 (cloud point, CP) to the newer, smaller-volume, and easier-to-perform methods D5949 and D5773 for bio-based base oils (estolides and iso-estolides). The CP results were in good agreement for less colored samples, but D5773 gave lower values for some darker (Gardner color >8) samples, especially esters. The D5949 showed a tendency to report slightly higher PP, especially for the lower values. Viscosities and densities in a wide temperature range (15 to 120 °C) were also measured. The surface tensions were estimated by a literature group method. Viscosity and density effects can only partially explain the differences in the PP values from the two methods. In conclusion, the newer mini-methods are an acceptable substitution when larger volumes are not accessible, unless the sample is too dark. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop