The RNA World: 4,000,000,050 years old
Acknowledgments
Conflicts of Interest
References
- Rich, A. On the problems of evolution and biochemical information transfer. In Horizons in Biochemistry; Kasha, M., Pullman, B., Eds.; Academic Press: New York, NY, USA, 1962; pp. 103–126. [Google Scholar]
- Scott, W.G.; Szöke, A.; Blaustein, J.; O’Rourke, S.M.; Robertson, M.P. RNA catalysis, thermodynamics and the origin of life. Life 2014, 4, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.L.; Unrau, P.J.; Müller, U.F. RNA synthesis by in vitro selected ribozymes for recreating an RNA world. Life 2015, 5, 247–268. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, H. Adsorption of nucleic acid bases, ribose, and phosphate by some clay minerals. Life 2015, 5, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Pino, S.; Sponer, J.E.; Costanzo, G.; Saladino, R.; Di Mauro, E. RNA sociology: From formamide to RNA, the path is tenuous but continuous. Life 2015, 5, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Riley, C.; Lehman, N. Generalized RNA-directed recombination of RNA. Chem. Biol. 2003, 10, 1233–1243. [Google Scholar] [CrossRef] [PubMed]
- Lehman, N. A recombination-based model for the origin and early evolution of genetic information. Chem. Biodiversity 2008, 5, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Mungi, C.V.; Rajamani, S. Characterization of RNA-like oligomers from lipid-assisted nonenzymatic synthesis: Implications for origin of informational molecules on early Earth. Life 2015, 5, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Kanai, A. Disrupted tRNA genes and tRNA fragments: A perspective on tRNA gene evolution. Life 2015, 5, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Kun, Á.; Szathmáry, E. Fitness landscapes of functional RNAs. Life 2015, 5, 1497–1517. [Google Scholar]
- Witzany, G. RNA sociology: Group behavioral motifs of RNA consortia. Life 2014, 4, 800–818. [Google Scholar] [CrossRef] [PubMed]
- Jukes, T.H. Molecules and Evolution; Columbia University Press: New York, NY, USA, 1966. [Google Scholar]
- Woese, C. The Genetic Code; Harper & Row: New York, NY, USA, 1967. [Google Scholar]
- Musto, H. How many theories on the genetic code do we need? J. Mol. Evol. 2014, 79, 1–2. [Google Scholar] [CrossRef] [PubMed]
- José, M.V.; Morgado, E.R.; Guimarães, R.C.; Zamudio, G.S.; Farías, S.T.; Bobadilla, J.R.; Sosa, D. Three-dimensional algebraic models of the tRNA code and 12 graphs for representing amino acids. Life 2014, 4, 341–373. [Google Scholar] [CrossRef] [PubMed]
- Fontecilla-Camps, J.C. The stereochemical basis of the genetic code and the (mostly) autotrophic origins of life. Life 2014, 4, 1013–1025. [Google Scholar] [CrossRef] [PubMed]
- Beier, A.; Zagrovic, B.; Polyansky, A.A. On the contribution of protein spatial organization to the physicochemical interconnection between proteins and their cognate mRNAs. Life 2014, 4, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Hartman, H.; Smith, T.F. The evolution of the ribosome and the genetic code. Life 2014, 4, 227–249. [Google Scholar] [PubMed]
- Lehman, N.; Jukes, T.H. Genetic code development by stop codon takeover. J. Theor. Biol. 1988, 135, 203–214. [Google Scholar] [CrossRef]
- Lundin, D.; Berggren, G.; Logan, D.T.; Sjöberg, B.-M. The origin and evolution of ribonucleotide reduction. Life 2015, 5, 604–636. [Google Scholar] [CrossRef] [PubMed]
- Neveu, M.; Kim, H.-J.; Benner, S.A. The “strong” RNA world hypothesis: Fifty years old. Astrobiology 2013, 13, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.W., Jr. What RNA world? Why a peptide/RNA partnership merits renewed experimental attention. Life 2015, 5, 294–320. [Google Scholar] [CrossRef] [PubMed]
- Van der Gulik, P.T.S.; Speijer, D. How amino acids and peptides shaped the RNA world. Life 2015, 5, 230–246. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.E.; Mowles, A.K.; Mehta, A.K.; Lynn, D.G. Looked at life from both sides now. Life 2014, 4, 887–902. [Google Scholar] [CrossRef] [PubMed]
- Wächtershäuser, G. The place of RNA in the origin and early evolution of the genetic machinery. Life 2014, 4, 1050–1091. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehman, N. The RNA World: 4,000,000,050 years old. Life 2015, 5, 1583-1586. https://doi.org/10.3390/life5041583
Lehman N. The RNA World: 4,000,000,050 years old. Life. 2015; 5(4):1583-1586. https://doi.org/10.3390/life5041583
Chicago/Turabian StyleLehman, Niles. 2015. "The RNA World: 4,000,000,050 years old" Life 5, no. 4: 1583-1586. https://doi.org/10.3390/life5041583
APA StyleLehman, N. (2015). The RNA World: 4,000,000,050 years old. Life, 5(4), 1583-1586. https://doi.org/10.3390/life5041583