Next Article in Journal
Raw Water Quality and Pretreatment in Managed Aquifer Recharge for Drinking Water Production in Finland
Previous Article in Journal
Effective Saturated Hydraulic Conductivity for Representing Field-Scale Infiltration and Surface Soil Moisture in Heterogeneous Unsaturated Soils Subjected to Rainfall Events
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Water 2017, 9(2), 135; doi:10.3390/w9020135

Accessing the Difference in the Climate Elasticity of Runoff across the Poyang Lake Basin, China

1
Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
3
Poyang Lake Research Center, Jiangxi Academy of Sciences, Nanchang 330096, China
*
Author to whom correspondence should be addressed.
Academic Editor: Athanasios Loukas
Received: 30 August 2016 / Revised: 9 February 2017 / Accepted: 11 February 2017 / Published: 20 February 2017
View Full-Text   |   Download PDF [2518 KB, uploaded 20 February 2017]   |  

Abstract

Understanding the effects of climate and catchment properties’ changes on water yield is a challenging component in assessments of future water resources. Here, we spatially applied the water-energy balance equation, based on the widely-used Budyko framework, to quantify the temporal and spatial differences of the climate elasticity of runoff in the Poyang Lake Basin (PYLB), highlighting the influence of the catchment properties’ parameter n variation on the climate elasticity and runoff prediction. By using Sen’s slope and the Mann–Kendall method, we found that, for the whole study period (1960–2010), annual temperature in PYLB significantly increased at a rate of 1.44% per decade. Basin-wide wind speed and net radiation had been declining at 0.17 m/s and 46.30 MJ/m2 per decade. No significant trend was detected in precipitation and relative humidity. The moving average method was applied to evaluate the temporal pattern of n. The results showed that the calibrated catchment properties’ parameter and the derived elasticities were not constant during the past 50 years. We found that in most sub-basins, the n values increased during 1970–1980, followed by a decreasing trend in the period from 1980 to 1990, whereas the n value in Fuhe sub-basin kept increasing for the almost the whole study period. In addition, the climate elasticity is highly correlated with the n value, indicating that the catchment properties’ parameter was the dominant factor influencing climate elasticity in PYLB in the past 50 years. We also attempted to predict the runoff trend with the consideration of trends in n. However, in some sub-basins, there were still considerable differences between the predicted runoff trend and the observed one. The method used here to evaluate the temporal pattern of n should be an extension of the existing literature and will provide a better understanding of elasticity in the regional hydrological cycle. View Full-Text
Keywords: Budyko; runoff; Poyang Lake Basin; elasticity Budyko; runoff; Poyang Lake Basin; elasticity
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Fan, H.; Xu, L.; Tao, H.; Feng, W.; Cheng, J.; You, H. Accessing the Difference in the Climate Elasticity of Runoff across the Poyang Lake Basin, China. Water 2017, 9, 135.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top