Next Article in Journal
Hedging Rules for Water Supply Reservoir Based on the Model of Simulation and Optimization
Previous Article in Journal
Role of Conservation Adoption Premiums on Participation in Water Quality Trading Programs
Article Menu

Export Article

Open AccessArticle
Water 2016, 8(6), 247; doi:10.3390/w8060247

An Ensemble Empirical Mode Decomposition, Self-Organizing Map, and Linear Genetic Programming Approach for Forecasting River Streamflow

Department of Civil & Environmental Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Clelia Marti
Received: 31 March 2016 / Revised: 24 May 2016 / Accepted: 31 May 2016 / Published: 9 June 2016
View Full-Text   |   Download PDF [4790 KB, uploaded 9 June 2016]   |  

Abstract

This study focused on employing Linear Genetic Programming (LGP), Ensemble Empirical Mode Decomposition (EEMD), and the Self-Organizing Map (SOM) in modeling the rainfall–runoff relationship in a mid-size catchment. Models were assessed with regard to their ability to capture daily discharge at Lock and Dam 10 along the Kentucky River as well as the hybrid design of EEM-SOM-LGP to make predictions multiple time-steps ahead. Different model designs were implemented to demonstrate the improvements of hybrid designs compared to LGP as a standalone application. Additionally, LGP was utilized to gain a better understanding of the catchment in question and to assess its ability to capture different aspects of the flow hydrograph. As a standalone application, LGP was able to outperform published Artificial Neural Network (ANN) results over the same dataset, posting an average absolute relative error (AARE) of 17.118 and Nash-Sutcliff (E) of 0.937. Utilizing EEMD derived IMF runoff subcomponents for forecasting daily discharge resulted in an AARE of 14.232 and E of 0.981. Clustering the EEMD-derived input space through an SOM before LGP application returned the strongest results, posting an AARE of 10.122 and E of 0.987. Applying LGP to the distinctive low and high flow seasons demonstrated a loss in correlation for the low flow season with an under-predictive nature signified by a normalized mean biased error (NMBE) of −2.353. Separating the rising and falling trends of the hydrograph showed that the falling trends were more easily captured with an AARE of 8.511 and E of 0.968 compared to the rising trends AARE of 38.744 and E of 0.948. Utilizing the EEMD-SOM-LGP design to make predictions multiple-time-steps ahead resulted in a AARE of 43.365 and E of 0.902 for predicting streamflow three days ahead. The results demonstrate the effectiveness of utilizing EEMD and an SOM in conjunction with LGP for streamflow forecasting. View Full-Text
Keywords: linear genetic programming; ensemble empirical mode decomposition; streamflow forecasting; data-driven modeling; cluster analysis; self-organizing map linear genetic programming; ensemble empirical mode decomposition; streamflow forecasting; data-driven modeling; cluster analysis; self-organizing map
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Barge, J.T.; Sharif, H.O. An Ensemble Empirical Mode Decomposition, Self-Organizing Map, and Linear Genetic Programming Approach for Forecasting River Streamflow. Water 2016, 8, 247.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top