Next Article in Journal
Comparing Two Operating Configurations in a Full-Scale Arsenic Removal Plant. Case Study: Guatemala
Next Article in Special Issue
Framing Scenarios of Binational Water Policy with a Tool to Visualize, Quantify and Valuate Changes in Ecosystem Services
Previous Article in Journal
Decision Support Systems for Water Resources Management in Developing Countries: Learning from Experiences in Africa
Previous Article in Special Issue
Science to Support Management of Receiving Waters in an Event-Driven Ecosystem: From Land to River to Sea
Water 2013, 5(2), 819-833; doi:10.3390/w5020819
Article

On the Vulnerability of Water Limited Ecosystems to Climate Change

1,*  and 2
Received: 25 April 2013; in revised form: 6 June 2013 / Accepted: 13 June 2013 / Published: 21 June 2013
(This article belongs to the Special Issue Ecological Watershed Management)
View Full-Text   |   Download PDF [1258 KB, uploaded 21 June 2013]   |   Browse Figures
Abstract: Society is facing growing environmental problems that require new research efforts to understand the way ecosystems operate and survive, and their mutual relationships with the hydrologic cycle. In this respect, ecohydrology suggests a renewed interdisciplinary approach that aims to provide a better comprehension of the effects of climatic changes on terrestrial ecosystems. With this aim, a coupled hydrological/ecological model is adopted to describe simultaneously vegetation pattern evolution and hydrological water budget at the basin scale using as test site the Upper Rio Salado basin (Sevilleta, NM, USA). The hydrological analyses have been carried out using a recently formulated framework for the water balance at the daily level linked with a spatial model for the description of the spatial organization of vegetation. This enables quantitatively assessing the effects on soil water availability on future climatic scenarios. Results highlighted that the relationship between climatic forcing (water availability) and vegetation patterns is strongly non-linear. This implies, under some specific conditions which depend on the ecosystem characteristics, small changes in climatic conditions may produce significant transformation of the vegetation patterns.
Keywords: vegetation patterns; cellular automata model; vegetation water stress; landscape metrics vegetation patterns; cellular automata model; vegetation water stress; landscape metrics
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Manfreda, S.; Caylor, K.K. On the Vulnerability of Water Limited Ecosystems to Climate Change. Water 2013, 5, 819-833.

AMA Style

Manfreda S, Caylor KK. On the Vulnerability of Water Limited Ecosystems to Climate Change. Water. 2013; 5(2):819-833.

Chicago/Turabian Style

Manfreda, Salvatore; Caylor, Kelly K. 2013. "On the Vulnerability of Water Limited Ecosystems to Climate Change." Water 5, no. 2: 819-833.


Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert