Next Article in Journal
Improving Stochastic Modelling of Daily Rainfall Using the ENSO Index: Model Development and Application in Chile
Previous Article in Journal
Groundwater Overexploitation and Seawater Intrusion in Coastal Areas of Arid and Semi-Arid Regions
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Water 2018, 10(2), 144; https://doi.org/10.3390/w10020144

Quantifying Climatic Impact on Reference Evapotranspiration Trends in the Huai River Basin of Eastern China

1
Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
2
Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
These authors contributed equally to this work.
*
Authors to whom correspondence should be addressed.
Received: 18 December 2017 / Revised: 23 January 2018 / Accepted: 30 January 2018 / Published: 2 February 2018
View Full-Text   |   Download PDF [20811 KB, uploaded 2 February 2018]   |  

Abstract

Reference evapotranspiration (ETref) is an important study object for hydrological cycle processes in the context of drought-flood risks of the Huai River Basin (HRB). In this study, the FAO-56 Penman–Monteith (PM) model was employed to calculate seasonal and annual ETref based on 137 meteorological station data points in HRB from 1961 to 2014. The Mann–Kendall (MK) trend analysis was adopted together with Theil–Sen’s estimator to detect tendencies of ETref and climate factors. Furthermore, a developed differential equation method based on the FAO-56 PM model was applied to quantify the sensitivities of ETref to meteorological factors and their contributions to ETref trends. The results showed that the ETref demonstrated a strong spatially heterogeneity in the whole HRB at each time scale. ETref showed a significant decreasing trend in the upper-middle HRB and Yi-Shu-Si River Basin, especially at the annual time scale, in growing season and summer, while a generally increasing trend in ETref was detected in the lower HRB, and the significance only showed in spring. These phenomena could be reasonably explained by a significantly increasing mean temperature (TA), a significantly decreasing wind speed (WS), solar radiation (SR), and a slightly decreasing relative humidity (RH). The most sensitive factor to ETref was RH in most sub-regions and most time scales, except in the growing season and summer. Based on the developed differential equation method, the dominant factor of the decreasing ETref was WS in the annual time scale, spring, autumn, and winter in most sub-regions, except the lower HRB, which then shifted to SR in the growing season and summer. However, in the lower HRB, the significantly decreasing RH was the most dominant factor, especially in the annual time scale, growing season, and spring, which might be responsible for the slightly increasing ETref there. View Full-Text
Keywords: reference evapotranspiration; sensitivity coefficient; contribution; Huai River Basin; differential equation method reference evapotranspiration; sensitivity coefficient; contribution; Huai River Basin; differential equation method
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Li, M.; Chu, R.; Shen, S.; Islam, A.R.M.T. Quantifying Climatic Impact on Reference Evapotranspiration Trends in the Huai River Basin of Eastern China. Water 2018, 10, 144.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top