Next Article in Journal
Transcriptome Profiling Reveals the EanI/R Quorum Sensing Regulon in Pantoea Ananatis LMG 2665T
Previous Article in Journal
Correction: Almeida-Dalmet, S.; et al. Differential Gene Expression in Response to Salinity and Temperature in a Haloarcula Strain from Great Salt Lake, Utah. Genes 2017, 9, 52
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessArticle
Genes 2018, 9(3), 147; https://doi.org/10.3390/genes9030147

Phenotype- and SSR-Based Estimates of Genetic Variation between and within Two Important Elymus Species in Western and Northern China

The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
*
Authors to whom correspondence should be addressed.
Received: 13 December 2017 / Revised: 1 March 2018 / Accepted: 1 March 2018 / Published: 7 March 2018
(This article belongs to the Section Plant Genetics and Genomics)
View Full-Text   |   Download PDF [6906 KB, uploaded 7 March 2018]   |  

Abstract

Elymus nutans and Elymus sibiricus are two important perennial forage grasses of the genus Elymus, widely distributed in high altitude regions of Western and Northern China, especially on the Qinghai-Tibetan Plateau. Information on phenotypic and genetic diversity is limited, but necessary for Elymus germplasm collection, conservation, and utilization. In the present study, the phenotypic and genetic differentiation of 73 accessions of the two species were evaluated using 15 phenotypic traits and 40 expressed sequence tag derived simple sequence repeat markers (EST-SSRs). The results showed that only 7.23% phenotypic differentiation (Pst) existed between the two Elymus species based on fifteen quantitative traits. Principal component analysis (PCA) revealed that leaf traits, spike traits, and some seed traits were dominant factors in phenotypic variation. Moreover, 396 (97.8%) and 331 (87.1%) polymorphic bands were generated from 40 EST-SSR primers, suggesting high levels of genetic diversity for the two species. The highest genetic diversity was found in the Northeastern Qinghai-Tibetan Plateau groups. Clustering analysis based on molecular data showed that most accessions of each Elymus species tended to group together. Similar results were described by principal coordinates analysis (PCoA) and structure analysis. The molecular variance analysis (AMOVA) revealed that 81.47% and 89.32% variation existed within the geographical groups for the two species, respectively. Pearson’s correlation analyses showed a strong positive correlation between Nei’s genetic diversity and annual mean temperature. These results could facilitate Elymus germplasm collection, conservation, and future breeding. View Full-Text
Keywords: Elymus; phenotype; SSR markers; genetic diversity; conservation Elymus; phenotype; SSR markers; genetic diversity; conservation
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Zhang, Z.; Xie, W.; Zhang, J.; Zhao, X.; Zhao, Y.; Wang, Y. Phenotype- and SSR-Based Estimates of Genetic Variation between and within Two Important Elymus Species in Western and Northern China. Genes 2018, 9, 147.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Genes EISSN 2073-4425 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top