Next Article in Journal
Microfluidic Separation of a Soluble Substance Using Transverse Diffusion in a Layered Flow
Next Article in Special Issue
Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials
Previous Article in Journal
Vorticella: A Protozoan for Bio-Inspired Engineering
Previous Article in Special Issue
Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessFeature PaperReview
Micromachines 2017, 8(1), 7; doi:10.3390/mi8010007

Materials, Mechanics, and Patterning Techniques for Elastomer-Based Stretchable Conductors

Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
*
Author to whom correspondence should be addressed.
Academic Editors: Seung Hwan Ko, Daeho Lee and Zhigang Wu
Received: 29 October 2016 / Revised: 18 December 2016 / Accepted: 20 December 2016 / Published: 27 December 2016
(This article belongs to the Special Issue Flexible and Stretchable Electronics)
View Full-Text   |   Download PDF [4143 KB, uploaded 27 December 2016]   |  

Abstract

Stretchable electronics represent a new generation of electronics that utilize soft, deformable elastomers as the substrate or matrix instead of the traditional rigid printed circuit boards. As the most essential component of stretchable electronics, the conductors should meet the requirements for both high conductivity and the capability to maintain conductive under large deformations such as bending, twisting, stretching, and compressing. This review summarizes recent progresses in various aspects of this fascinating and challenging area, including materials for supporting elastomers and electrical conductors, unique designs and stretching mechanics, and the subtractive and additive patterning techniques. The applications are discussed along with functional devices based on these conductors. Finally, the review is concluded with the current limitations, challenges, and future directions of stretchable conductors. View Full-Text
Keywords: stretchable conductors; elastomers; patterning techniques; direct printing; transfer printing stretchable conductors; elastomers; patterning techniques; direct printing; transfer printing
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Yu, X.; Mahajan, B.K.; Shou, W.; Pan, H. Materials, Mechanics, and Patterning Techniques for Elastomer-Based Stretchable Conductors. Micromachines 2017, 8, 7.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Micromachines EISSN 2072-666X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top